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Problem 5.1.34.

Solution. We can prove the converse directly. If the following commutative square is a pullback:

E X

X Y

i

i g

f

Then the following diagram commutes for any other object A in the category where gj = fj.

A

E X

X Y

h

j

j

i

i g

f

.
Note there exists a unique h : A→ E where ih = j and gi = fi. This diagram collapses to:

A

E X Y
h

j

i f

g

Then A is a fork as gj = fj from before. And indeed there exists a unique h : A → E where ih = j.
This is true for any such fork in this category, which is a special case of the commutative square describe
before, so E is an equalizer.

Problem 5.1.38(a).

Solution. We must show that (L
pI−→ D(I))I∈I is a limit cone of D : I → A .

First we show that L is a cone; that for any u : J → K (where J,K ∈ A ). DupJ = pK . We know that
L is a fork of s and t (in particular it is the equalizer of s and t) so sp = tp. Then for any u : J → K,
sup = tup. Because tu = prK , tup = pK . Similarly, because su = DuprJ , sup = DupJ . Then pK = DupJ so
L is a cone.

We finish by showing that L is also the limit of D. Notice that any other cone A on D is also a fork of

s and t (The family of maps (A
fI−→ D(I))I∈I can be represented as the single f : A →

∏
I∈ID(I) with the

property sf = tf equivalent to DufJ = fK for any u : J → K). Because L is the equalizer of s and t, there
exists a unique g : A→ L such that pg = f for any such cone A. Then certainly pIg = fI so L is also a limit
cone.
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Problem 5.1.38(b).

Solution. We first that if A has binary products and a terminal object, A also has finite products.
Consider X,Y, Z ∈ A . Because A has binary products, both the products X×Y and (X×Y )×Z exist.
Define X × Y as the product with projections pX and pY and P as the product (X × Y ) × Z, with

projections pX×Y and pZ . We will show that P also has projections pXpX×Y , pY pX×Y , pZ onto X, Y , and
Z respectively that satisfy the necessary properties so that it is also the product X × Y × Z .

We pick an arbitrary object and set of maps:

X

A Y

Z

fX

fY

fZ

And claim that for any such diagram, there exists a unique g : A → P , where fX = pXpX×Y g, fY =
pY pX×Y g and fZ = pZg.

To see fX = pXpX×Y g, we introduce a terminal object T and construct the following commutative
diagram:

X T

A P X × Y Y

Z

tX

g

fX

pX×Y

pZ

pY

pX

Where g is the map satisfying the unversal property for P as the product (X×Y )×Z. Then gpX×Y pXtX =
fXtX , because T is a terminal object, so gpX×Y pX = fX . An identical argument proves gpX×Y pY = fY .
The result gpZ = fZ can be seen considering (X × Y )× Z as an ordinary binary product.

We can continue in this way to build products of any finite set of objects in A .
With finite products and equalizers, the argument in 5.1.38(a) remains the same when D has a finite

number of maps u ∈ I. Then D has finite limits.
(Its actually still unclear to me why we can’t make products of infinite objects)

Problem 5.2.21.

Solution. We first prove s = t iff there exists an equalizer of s and t the given category and its an isomorphism.
If s = t, the equalizer of s and t is X along with the identity 1X . This equalizer is certainly a fork as

s1X = t1X . For any other fork A with f : A → X where sf = tf , f itself is the unique map such that
s1Xf = t1Xf . This proves our forward argument.

If there exists an equalizer of s and t that is also an isomorphism, which we shall denote as the object
E with map i : E → X, then si = ti. If we precompose these maps with the inverse of i denoted j, then
sij = tij is the same as s1X = t1X and s = t, which is our desired result.

We then prove there exists an equalizer of s and t and its an isomorphism iff there exists a coequalizer of
s and t and its an isomorphism. To see the forward direction, denote our equalizer as E with map i : E → X
and consider the (co?)fork Y with isomoprhism 1Y . Certainly 1Y si = 1Y ti and precomposing with the
inverse j of i we recover the desired 1Y s = 1Y t. Y is also a coequalizer as any (co?)fork A with f : Y → A
where fs = ft induces f1Y s = f1Y t.

The proof the reverse direction follows an identical structure and is left as an exercise to the reader.

Problem 5.2.22(a).
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Solution. The coequalizer is the set of equivalence classes of X generated by the relation R = {(f(x), x)|x ∈
X} denoted by X∗, along with the map p : X → X∗ which sends each x ∈ X to its respective equivalence
class. Indeed pf = p1.

We can verify that this coequalizer is universal in this property. Consider any cofork A, with map
h : X → A with hf = h1.

X X X∗ A
1

f
p

h

g

We define our unique g as g = x∗ 7→ h(x) where x is an arbitrary member of the equivalence class x∗. We
can see that h and pg are then the same map. pg = x 7→ h(x) such that h(x) = h(f(x)) by our construction
of g. This is an alternative way of stating h = x 7→ h(x) where hf = h.

Problem 5.2.22(b).

Solution. Similar to (a), the coequalizer in Top is the space whose underlying set is the equivalence classes
of X generated by the relation R = {(f(x), x)|x ∈ X} denoted by X∗, along with the map p : X → X∗

which sends each x ∈ X to its respective equivalence class. The space X∗ inherits the topology induced by
the quotient map {U ⊂ X∗|p−1(U) open in X}. Because p is strongly continuous, as U ⊂ X∗ open in X∗

iff p−1(U) open in X, p is certainly continuous.
We can verify this coequalizer is universal in this property. Consider any cofork, with continuous map

h : X → A with hf = h1.

X X X∗ A
1

f
p

h

g

Similar to (a), we define our universal map g as g = x∗ 7→ h(x), where x is any x in the equivalence
class x∗. We’ve already shown that h(x) = gp(x) for any x ∈ X in (a). Then because h is continuous (open
U ⊂ A =⇒ h−1(U) open in X as given) so is gp and so is g.

If X = S1, f = [] 7→ [0, x]

Problem 5.2.24(a).

Solution. We begin by proving the forward direction. Given isomorphic e, e′ ∈ Epic(A) we must show they
induce the same equivalence relation on A.

Recall a function h : X → Y induces an equivalence relation on X defined as {(x, y)|h(x) = h(y)}. Then
for two functions h, h′ : X → Y , if (h(x) = h(y) ⇐⇒ h′(x) = h′(y) then e, e′ induce the same equivalence
relation on A.

Consider the following commutative diagram showing our two objects e, e′ ∈ Epic(A) with isomorphism
f :

A

X X ′

e
e′

f

Note that fe = e′ and e = f−1e′, using the fact that these maps commute in our category and f is an
isomorphism.

If e(x) = e(y), then f−1e′(x) = f−1e′(y) and e′(x) = e′(y) (as an isomorphism in Set, f is a bijection).
An identical argument can be used to show the converse. Then e(x) = e(y) ⇐⇒ e′(x) = e′(y) and we
shown this is an alternative way of stating that e, e′ induce the same equivalence relation on A.
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To see the reverse argument, that given e, e′ ∈ Epic(A) that induce the same equivalence relation on
A these functions must be isomorphic, we will construct an bijection f : X → X ′ such that fe = e′ and
e = f−1e′.

We define f = e(a) 7→ e′(a) and claim this mapping is a bijection. To see f is injective, recall if
e, e′ ∈ Epic(A) induce the same equivalence relation on A, e(a) = e(a′) ⇐⇒ e′(a) = e′(a′). Then
e(a) ̸= e(a′) =⇒ e′(a) ̸= e′(a′). To see f is surjective, note that e′ is surjective and if x = e′(a) ∈ X ′ exists,
certainly e(a) exists. To see that f itself is well-defined, note that e is surjective. Since f is a bijection, e, e′

are isomorphic.
This proves our result, that each equivalence relation on A corresponds to an isomorphic class of functions

out of A.

Problem 5.2.24(b).

Solution. Fix some group G ∈ Grp and construct the full subcategory Epic(G) of G\Grp whose objects
are epics.

Our ”quotient objects” in this subcategory are the isomorphism classes of epics. We will show that each
such isomorphism class corresponds to a unique normal subgroup of G.

Consider two such epics ψ,ψ′ with isomorphism ϕ:

G

X X ′

ψ
ψ′

ϕ

We claim ker(ψ) = ker(ψ′). For any x ∈ G where ϕ′(x) = 1, ψϕ(x) = 1 by commutativity and
ψ−1ψϕ = ϕ(x) = 1 because ψ is an isomorphism. The same argument holds for the converse, so ψ and ψ′

share the same kernel.
Then because ker(ψ) ⊴ G for any homormorphism ψ : G → X, the isomorphism class of such epics

corresponds to a unique normal subgroup of G.
We now show the reverse, that each normal subgroup of G corresponds to a unique quotient object.

Define N ⊴ G, and construct an arbitrary surjective homomorphism ψ : G → X where ker(ψ) = N . We
claim that any additional homormophism ψ′ that is surjective and shares this kernel is isomorphic to ψ. The
isomorphism theorems tell us that ψ(G) ∼= G\N and ψ′(G) ∼= G\N . Then ψ(G) ∼= ψ′(G) and this proves
our result.

Problem 5.2.25(a).

Solution. Let m : A→ B be a split monic. We will show this is also a regular monic. Define any e : B → A
such that em = fm. We claim that m is the equalizer of e and f . To see this, consider any other fork C,
such that eh = fh, in the following diagram:

C

A B A

g
h

m
e

f

By construction, eh = emg. Then eh = 1Ag, so our universal map is defined as g = eh. Indeed to see,
emg = fmg, observe emeh = fmeh and by substitution 1Aeh = 1Aeh, giving us our result.

We now show that m is also a monic. For any x, x′ : X → A, where mx = mx′, we show x = x′. Notice
that since m is an equalizer for some maps s, t, the object X and map mx must be a fork of these maps
(tmx = smx). If we construct the diagram of this fork along with its projection g on our equalizer:
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X

A B A

g
mx

m
s

t

We notice that our universal g for mx is exactly x and because it is unique, mx = mx′ =⇒ x = x′.

Problem 5.3.8.

Solution. We define F : A ×A → A as F = (X,Y ) 7→ X×Y where X×Y is the binary product of (X,Y ).
Because A has binary products, this assignment is straightforward.

To define assignment of morphisms, consider an additional (X ′, Y ′) ∈ A × A with morphism (f, g) :
(X,Y ) → (X ′, Y ′) induced by f : X → X ′, g : Y → Y ′. When we treat X ×Y as any other object satisfying
the properties of product X ′ × Y ′, the following diagram emerges:

X × Y

X X ′ × Y ′ Y

X ′ Y ′

px pyḡ

f g

F ((f, g)) = ḡ, where ḡ is universal map associated with fpx : X × Y → X ′ and gpy : X × Y → Y ′.
We can verify F satisfies the necessary axioms. For any (A,A) ∈ A × A . F (1(A,A)) = 1A×A. We can

examine the commutative diagram to verify that the universal map assigned under our definition is the same
as the desired identity morphism:

X × Y

X × Y

X Y

pX pY

1X×Y

pX pY

To see composition, we define an additional (X ′′, Y ′′) ∈ A × A with morphism (f ′, g′) : (X ′, Y ′) →
(X ′′, Y ′′) induced by f : X ′ → X ′′, g : Y ′ → Y ′′. We wish to show that F ((f ′, g′) ◦ (f, g)) = F ((f ′, g′)) ◦
F ((f, g))

X × Y

X X ′ × Y ′ Y

X ′ X ′′ × Y ′′ Y ′

X ′′ Y ′′

ḡ
pX pY

f ′fpX g′gpY

f ¯̄g
pX′ pY ′

g

f ′
pX′′ pY ′′

g′

F ((f ′, g′)) ◦ F ((f, g)) = ¯̄gḡ. F ((f ′, g′) ◦ (f, g)) is equivalent to the universal map induced by f ′fpX and
g′gpY . But it is clear from our diagram that is the same as ¯̄gḡ, giving us our result.

Problem 5.3.11(a).
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Solution. We will show that the forgetful functor U : Grp → Set creates arbitrary limits.
To see this we define a diagram D : I → Grp where I is any small category. For any limit cone

(B
qI−→ UDI)I∈I on FD, we must show there exists a corresponding limit cone (A

pI−→ DI)I∈I on D where
U(A) = B and U(pI) = qI for each I ∈ I.

We know that B is the set {(xI)I∈I ∈
∏
I∈I UDI|UDu(xJ) = xK for each UDu : UDJ → UDK} and

each (B
qI−→ UDI) is the projection map.

Then there is a unique group structure we can impose on A that satisfies the desired properties. We know
pI :

∏
I∈IDI → DI is defined as (xI)I 7→ xI . Then for each a, a′ ∈ A, pI(a◦a′) = pI(a)◦pI(a′) = xI ◦x′I for

each I ∈ I. So a ◦ a′ = (xI ◦ x′I)I∈I. A similar argument recovers inverses for each element and the identity
for our group and we have our result.

Problem 5.3.11(b).

Solution. We will show that the forgetful functor U : Ab → Set creates arbitrary limits.
We can reuse much of the previous argument but must verify that the group structure we define is abelian.

As before, a, a′ ∈ A, pI(a ◦ a′) = pI(a) ◦ pI(a′) = xI ◦ x′I for each I ∈ I. So a ◦ a′ = (xI ◦ x′I)I∈I. But each
DI is abelian, so (x′I ◦ xI)I∈I for each I ∈ I so certainly (x′I ◦ xI)I∈I. Then a ◦ a′ = a′ ◦ a.
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