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Projective geometry is a branch of mathematics that study the properties of geometric objects that
remain the same under diffferent perspectives (such properties are invariant with respect to projective trans-
formation).

The subject formalizes ideas from perspective art, such as implicit horizon points or lines ”at infinity”
that induce perspective. In a perspective drawing, two parallel lines meet at a distant horizon point that is
not in the picture. (These points and lines at infinity that guide perspective drawings are called ”idealized
directions” and ”idealized points” respectively.)

The study of projective geometry dates back to the Greek mathematician Pappus of Alexandria in the
3rd century. There was a revival of the subject amongst French mathematicians, beginning with Desargues
in the early 1600s and continuing with Poncelet and Carnot (where Carnot was balancing a foundational
exposition on the subject with leadership position in Robespierre’s Committee of Public Safety. One would
be suprised but cannot expect an less from a French mathematician).

As the projective literature grew, it began to make contributions to new fields of analytical and alge-
braic geometry, as well as gain popularity amongst mathematical physicists in the development of quantum
mechanics. In fact, Dirac would often draw projective diagrams of his equations to develop intuition before
formalizing them algebraically and would leave this diagrams out of print because they were expensive and
he assumed many physicists were unfamiliar with the subject. Klein’s Erlangen program also developed
projective geometry, in addition to Euclidean and affine geometry, around this time (1872).

We are interested in deriving the basic axioms and properties of generalized projective spaces, initially
following notes from Hitchin, towards computing the fundamental group of the real projective plane. We
will discover beautiful results that touch quantum physics and traditional Binasuan dancing in addition to
algebraic topology.

1 Basic Definitions

Definition 1.1. Let V be a vector space. The projective space P (V ) is the set of 1-dimensional vector
subspaces of V .

It can be useful to think of projective spaces, at least in the real case, as bundles of lines that pass
through the origin. This reduces our space by a dimension, motivating the common shorthand for the reals
Pn(R) = P (Rn+1).

Many sources encourage thinking about the sphere Sn for a projective space Pn(R) to ease the visual-
ization of a space of lines. Antipodal points on the sphere are identified and every such antipodal pair is
injective with the actual elements of the projective space.

I have found it easier to just think of the vector subspaces the projective elements represent (projective
points and lines are lines and planes through the origin in R3) for more natural geometric intuition.

1.1 Decomposition

The following decomposition is useful to understand the structure of theses spaces:

P (Rn) = Rn−1 + P (Rn−1)
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Essentially our goal is to take Rn and partition the set of points into 1-dim vector subspaces such that
each partition has a nice representation. Recall:

Definition 1.2. A representative vector is any of the non-zero vectors from the 1-dimensional subspace
corresponding to a point [v] ∈ P (V ).

Then if [x] = [λx] = [a], x and a are both representatives for the same projective point.
We also want to define the notion of the homogoenous coordinates for each projective point, which are

just the real points that exist in the corresponding vector subspace.

Definition 1.3. The homogoenous coordinates for [v] ∈ P (V ) are the set [(x0 · · ·xn)] equivalent under
scalar multiplication by λ.

If we construct a subset of homogoenous coordinates U0 where x0 ̸= 1, notice that each [(x0 · · ·xn)] =
[1 · · ·xn/x0], so U0

∼= Rn − 1. We are left to ”partition” the coordinates where x0 = 0, but this is exactly
the set of 1-dimensional subspaces of V n − 1, so P (Rn−1).

1.2 Applications

1.3 Linear Subspaces

We begin by proving a result from elementary linear algebra.

Theorem 1.4. Let W1 and W2 be vector spaces. Then dimW1 +W2 = dimW1 + dimW2 − dimW1 ∩W2

Theorem 1.5. In a projective plane P (V ), two projective lines, P (U) and P (U ′), intersect in a unique
point.

Proof. From elementary linear algebra, dimV ≥ dimU + U ′. We have shown that dimU + U ′ = dimU +
dimU ′ − dimU ∩ U ′. Then 1 ≤ dimU ∩ U ′ ≤ 2. Because P (U) and P (U ′) are distinct, dimU ∩ U ′ = 1. So
P (U ∩ U ′) is a projective point.

It is useful to think about this result using our model of the projective plane as a sphere and using our
decomposition.

We can think of projective lines as planes in R3 that intersect the sphere in two great circles. These great
circles intersect in a pair of antipodal points, which is a projective line.

Alternatively

1.4 Projective Transformations

Given a linear transformation T : V →W , we might want to recover a bijective map τ : P (V ) → P (W ).

Definition 1.6. If T is invertible, τ is a projective transformation between projective spaces.

This is a map of lines to lines.
It seems natural to define τ as [x] 7→ [T (x)] for any x ∈ P (V ). But notice that because there is no 0

in P (W ) (as the collection of 1-dimensional subspaces), dimT ([x]) = 1 if τ is to be well-defined over its
codomain. Then T must be invertible.

Note. It is not immediately obvious that projective transformations describe bijections (or isomorphisms
between underlying vector spaces). However, a T that takes any U in V to 0 induces an ill-defined τ (no 0
in P (W )). Furthermore, if T (U) = T (U ′) for distinct U,U ′, T cannot be invertible so there will exist some
U ′′ where T (U ′′) goes to 0. So the requirement that T be invertible is really a requirment that τ needs to
be a well-defined map with only 1-dimensional subspaces in its codomain.

Note. Projective transformations are also called homographies and have roots in the non abstract origins
of projective geometry as a tool to study perspective. In broad strokes, a homography just describes a
transformation of perpsectives of the same underlying object.
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In fact, projective transformations descibe a collection of linear transformations T that are equivalent up
to scalar multiplication.

Proposition 1.7. If T, T ′ : V →W define the same projective transformation, T = λT ′.

Proof. If V is generated by basis {v1 · · · vn}, then [Tvi] = [T ′vi] by assumption. Certainly for each basis
element, Tvi = λiT

′vi. For an arbitrary element,
∑
Tvi =

∑
λiT

′vi, our assumption tells us T (
∑
vi) =

λT ′(
∑
vi). Then, by linearity:

λT ′(
∑

vi) = T (
∑

vi) =
∑

Tvi =
∑

λiT
′vi

. So λ = λi. Because λx = λ
∑
vi, T = λT ′.

In the real projective plane, there is very a natural geometric picture one can construct to see these
transformations are bundles of lines related by a disjoint ”observing point”.

Example 1.8. Consider two projective lines P (U) and P (U ′) in the projective plane P (V ). If there exists
a point K ∈ P (V ) disjoint from both lines, this point induces a natural projective transformation τ . For
each point (line) in P (U), draw a line through K, and where it meets P (U ′) is its image under τ .

We can see this is indeed a projective transformation by proving the underlying linear transformation
T : U → U ′ is invertible. If W is the subspace corresponding to K, any a ∈ U can be uniquely expressed
as w + a′ from W

⊕
U ′ (W is disjoint from both U and U ′). Then a′ = a − w where the w component

guarantees that kerT = 0.

Note. As outlined here, visualizing the above example in R2 leads to a natural image of an observer (our
extra point) connecting two planes together using their perspective. In fact, this transformation is also called
a perspectivity in computer graphics for this reason.

In vanilla linear algebra, we can fully characterize a linear transformation from an n dimensional space
by observing what it does to n linearly independent vectors.

Definition 1.9. Points X1 · · ·Xn+1 ∈ P (V ) are in general position if any subset of n points have represen-
tative vectors that are linearly independent.

Theorem 1.10. If X1 · · ·Xn+2 ∈ P (V ) (in n dimensional P (V )) are in general position in P (V ) and
Y1 · · ·Yn+2 are in general position in P (W ), then there is a unique projective transformation such that
τ(Xi) = Yi.

Proof. We can choose representatives, vi ∈ V , such that n + 1 representatives form a basis of V . We
can choose representatives such that vn+2 =

∑n+1
i=0 vi. Note that the sum of vectors is unique by linear

indpendence and must exist because (vi)i form a basis for V .

Similarly, we can choose representatives from W such that wn+2 =
∑n+1

i=0 wi. Again this sum of elements
is unique.

Then there exists a unique and invertible T : V →W described by the mapping of basis elements (where
T (vi) = wi) that induces a projective transform with the desired properties

To see uniqueness, consider an alternative T ′ : V →W such that T ′(vi) = µiwi, taking our basis elements
to a different representative of a point in P (W ).

Then T ′(vn+2) = µn+2wn+2 =
∑n+2

i=0 µiwi =
∑n+2

i=0 T
′(vi). Because wn+2, is the unique sum of represen-

tatives expressed earlier, µi

µn+2
= 1. So µi = µn+2 and T = µn+2T

′.

Note. Any two distinct points on the projective line are linearly independent vectors, so any three distinct
points on the projective line are in general position.

Theorem 1.11 (Desargues’ Theorem). Consider points A,A′, B,B′, C, C ′ ∈ P (V ), where the lines AA′, BB′, CC ′

are distinct and concurrent (intersect in a single point). Then the three points of intersection AB∩A′B′, BC∩
B′C ′, CA ∩ C ′A′ are collinear.
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Proof. Denote the point of intersection between our three lines P . Because any three points on the projective
line are in general position, we can express p as three different linear combinations of vectors:

p = a+ a′ = b+ b′ = c+ c′

Where a is a representative from A and so forth in the obvious way. We can make new points.

c′′ = a− b = b′ − a′

a′′ = b− c = c′ − b′

b′′ = c− a = a′ − c′

Notice that all of a′′, c′′, b′′ lie in a two-dimensional vector subspace and are representatives of projective
points at our desired intersections: [c′′] ∈ AB ∩A′B′ and so on.

Furthermore, notice c′′+a′′+ b′′ = 0, and this expression is 0 for any linear combination of these vectors.
To see this, consider

λcc
′′ + λaa

′′ + λbb
′′ = 0

and expand this expression to
λc(a− b) + λa(b− c) + λb(c− a) = 0

.
(λc − λb)a+ (−λc + λa)b+ (λa + λb)c

We can then see we need to choose new representatives from our projective lines that will lead to the desired
expression.

p = (λc − λb)a+ a′ = (−λc + λa)b+ b′ = (λa + λb)c+ c′

Because a′′, b′′, c′′ are linearly independent and each exist in a two-dimensional subspace of V , their
corresponding points in P (V ) are in general position. Three projective points in general position define a
line, so these points are collinear as desired.

1.5 Duality

We first review definitions of duality from linear algebra.

Definition 1.12. For a vector space V defined over field F , the dual of V is the vector space V ′ with
elements that are linear transformations f : V → F .

Definition 1.13. If the basis of V is {v1 · · · vn}, V ′ has a corresponding basis where for each vi, fi(vi) = 1
and fi(vj) = 0 for all j ̸= i.

Given a linear transformation T : V → W over vector spaces, there is a canonical linear transformation
induced over its duals T ′ : W ′ → V ′, given by T ′(f) = f(T ). Indeed T ′f = fT : V → F and T ′f = fT =
vi 7→ f(T (vi)).

Note. We can use the language of contravariant functors to illustrate the correspondance between linear
transformations in their vector and dual spaces.

The correspondence of a category of functions to another category with the domain and codmain swapped
is ubituiquitous in category theory and is used to introduce covariant and contravariant functors in Leinster.

Definition 1.14. The dual of a dual, denoted V ′′, is a vector space of linear transformations (V → F ) → F .
This space is isomorphic to V .
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To see this isomorphism, take S : V → V ′′, Sv = f 7→ f(v). To see it is linear in v:

S(λ1v1 + λ2v2)

= f 7→ f(λ1v1 + λ2v2)

= f 7→ (λ1f(v1) + λ2f(v2))

= λ1(f 7→ f(v1)) + λ2(f 7→ f(v2))

= λ1S(v1) + λ2S(v2)

Because f is itself a linear transformation. The kernel of S is 0 as there exist no non zero vector v where
f(v) = 0∀f ∈ V ′. Then S is a linear transformation over spaces with the same dimensions and a non-zero
kernel, so it is an isomoprhism.

Definition 1.15. The annihilator Uoo for some subspace V ⊆ U is defined {f ′ ∈ V ′ | f ′(f) = 0,∀f ∈ Uo}

Then we claim S(U) = Uoo for any subspace U . Indeed for any u ∈ U , Su(f) = f(u) for all such f ∈ Uo,
so S(U) ⊆ Uoo. Equality follows because S is an isomorphism. (The notes claim this instead follows from
the theorem dimV = dimU + dimUo, but I fail to see this)

This fact will be useful in the next section.

1.6 Projective Dual Spaces

If there exists some dual V ′ for each V , we want to say something about P (V ′) in its relation to P (V ) and
maybe use this structure to prove theorems in the projective space using the dual projective space.

The simplest example of this is ”two distinct points define a unique line” has an equivalent dual analogue
”two distinct lines define a unique point” (and note that in projective spaces, this statement of course holds
for parallel lines).

First, examine a point f ∈ P (V ′) and notice ker f is some U ⊆ V with dimU = n− 1. (f : V ′ → F and
dimker f = dimV ′ − dimF ). This point then defines, up to scalar multiplication of f , a unique subspace of
P (V ), a hyperplane. This gives us a correspondence between the vector and dual space that is not possible
in the non projective spaces.

Definition 1.16. A hyperplane in P (V ) of dimension n is some P (U) of dimension n− 1.

Theorem 1.17. A subspace P (W ) ⊆ P (V ′) of dimension m (where P (V ′) is dimension n) corresponds to
a set of hyperplanes in P (V ) that share some fixed subspace P (U) of dimension n−m− 1

Projective dual spaces give us an intepretation of the space of lines in R2. Recall the familiar decom-
position P 2(R) = R2 ∪ P (R), where every projective line that is not the line at infinity intersects R2 in a
straight line. Then we need only to remove the line at infinity to describe the space of straight lines, or a
point in the dual space.

We parameterize our sphere with spherical coordinates but restrict the range of θ to exclude the north
and south poles.

x1 = sin θ cosϕ, x2 = sin θ sinϕ, x3 = cos θ; 0 < θ < π, 0 ≤ ϕ ≤ 2π

With antipodal map is (θ, ϕ) 7→ (π − θ, π + ϕ).
Then to represent the space of lines, we need only to sketch the set of antipodal points. Consider

(θ, ϕ) ∈ (0, π) × [0, 2π] (gemoetrically this is a half sphere without poles). We only need to identify the
bottom edges of this square as the restriction over ϕ means the only antipodal points are of the form (θ, 0)
and (θ, π).

This identification of the top and bottom edge of the square, in reverse orientation, yields the mobius
strip.

Why was it important that we removed the poles? In other words, why do we need an open set θ ∈ (0, π)
as the bottom edge of our square?

Need to return to this.
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1.7 The Fundamental Group of the Projective Plane

This was all to become more comfortable with the projective real plane
Computing π(P 2(R), x0) ∼= Z2 is actually straightforward from van Kampen’s applied to 2-dimensional

cell complexes, but understanding the result geometrically is more challenging.
Recall the following result from Hatcher:

Theorem 1.18 (van Kampen’s applied to 2-dimensional cell complexes). Consider a 1-skeleton X. If we
attach a collection of 2-cells to X with maps φα, we obtain a 2-skeleton Y . Let N =< γαφαγ̄α > be the loops
around the attaching 2-cells (where the γα connect the loops to the basepoint in X). Then π(X)/N ∼= π(Y ).

The proof of this theorem gives us a general strategy for computing π(X) and we will use this to solve
π(P 2(R)).

Consider P 2(R) as a CW complex, where the 1-skeleton is S1 and the 2-skeleton is the open disk D2

attached to S1 along the loop aa−1.
Let B be the attached disk and A be the entire projective plane with a hole in it. Then P 2(R) = A ∪B

where both A and B are open, so van Kampen’s tells us π1(P
2(R)) ∼= (π1(A) ⋆ π1(B))/N , where N is

generated by the loops of the attachment map.
π1(B) is 0 as the open disk is contractible, while A deformation retracts to the circle so π1(A) ∼= Z. What

is left is to describe N , but we know from our theorem that φ : S1 → S1, that describes how to ”glue” our
disk to our 1-skeleton, is also a loop that generates N , and this is just a2.

Another way to see that N =< a2 > is to compute it. N = {iAB(ω)iBA(ω) | ω ∈ π1(A ∩ B)}, where
iAB : π1(A∩B) → π1(A). But because the image of iBA is trivial, N is generated by just the loops iAB(ω).
These loops are not trivial because they are included in A and must be pushed to the boundary of the space,
so they homotope to the loop that follows the edges of the attached disk, and this is a2.

So our result is the group free in one generator modulo the relation aa1:

π1(P
2(R)) ∼=< a | a2 >∼= Z2.

Now we should think a bit about what this result means.

Note (Geometric interpretation of loops on mobius band). (What the fuck was I trying to say?)
Pick a basepoint on the mobius band and construct a loop by traversing the band until you have arrived

back at the basepoint. See this is not nullhomotopic.
Now continue from the same basepoint and trace the same path. See that the combined loop is now

nullhomotopic.

1.8 Application

It can be shown that π1(SO(3)) ∼= Z2
∼= π1(P

3(R)) and the 2-skeleton of π1(P
3(R) agrees with π1(P

2(R))
(using techniques I do not yet understand so will just take at face value for the time being).

But this result means that the group of rotational symmetries of an object is isomorphic to Z2. In other
words, a rotation of an object with strings attached by 360 degrees does not yield the same object, but
another rotation does.

In physics, this is called the Feynman plate trick (or Dirac belt trick), illustrated extending ones arm
with a plate on it and rotating the arm in a full rotation. The plate will be in the same orientation upon
the first rotation but the arm will be twisted. Twisting the arm again will yield both the plate and arm in
the original orientation.

Note. Binasuan Dance There is a traditional Phillipine dance where the performers will hold glasses of rice
wine and elegantly twist their limbs without spillling the liquid.

• Feynman’s plate trick

• Binasuan Dance

• An arm rotating a glass
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1.9 Exercises

Solutions to selected exercises from Hitchin’s notes.

Exercise 1.1. Denote the set of 1-dimensional subspaces of {span{x, y}|x ∈ U1, y ∈ U2} as A. Denote the
set of 1-dimensional subspaces of U1 + U2 as B.

To see A ⊆ B, for a ∈ A, a one-dimensional subspace of span{x, y} can be represented by x+ y, and this
is clearly a one-dimensional subspace of U1 + U2.

To see B ⊆ A, choose some basis vector from b ∈ B, then b = x′ + y′, then it is a one-dimensional
subspace of some element of A as desired.

Note that A is exactly the set of projective points defined by all lines through X ∈ P (U1) and Y ∈ P (U2).
And B follows from the definition of P (U1 + U2). Their equivalence proves our result.

1.10 Appendix

Theorem 1.19. dimW1 +W2 = dimW1 + dimW2

Proof. Let S = {u1 · · ·ur} be the basis ofW1+W2. LetB1 = {u1 · · ·urv1 · · · vs} andB2 = {u1 · · ·urw1 · · ·wt}
be B extended to be the basis of W1 and W2 respectively. If we can show B is the basis of W1 +W2, we
have our result, as dimB = r + s+ t = (r + s) + (r + t)− r = dimW1 + dimW2 − dimW1 ∩W2.

First, we show B is linearly independent. Let

r∑
i

aiui +

s∑
j

bjvj +

t∑
k

ckwk = 0

.
Notice if we move terms so

r∑
i

aiui +

s∑
j

bjvj = −
t∑
k

ckwk

,
then the LHS is in W1 and the RHS is in W2, so both sides represent the same element in W1 +W2.
Then

∑r
i diui = −

∑t
k ckwk, where the LHS uses B and the RHS uses B2. Again moving terms:

r∑
i

diui +

t∑
k

ckwk = 0

Where all ci must be 0 as B2 is linearly independent. Then

r∑
i

aiui +

s∑
j

bjvj = 0

But the LHS is described by B1 which is also linearly independent so all ai, bj must also be 0. Then B
is linearly independent.

Consider any w1 + w2.

w1 =

r∑
i

aiui +

s∑
j

bjvj

w2 =

r∑
i

diui +

t∑
k

ckwk

Then

w1 + w2 =

r∑
i

(ai + di)ui +

s∑
j

bjvj +

t∑
k

ckwk ∈ spanW1 +W2
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Note (Spherical, Cyndrical, Cartesian coordinates). Cyndrical coordinates of a point in R3 are simply polar
coordinates with a z-axis. (θ, r, z):

x1 = r cos θ

x2 = r sin θ

x3 = z

Spherical coordinates use the same θ around the x axis but decribe the point using a distance from the
origin p and an angle from the z axis ψ. (θ, ψ, p) is

θ = θ

r = sinψ

z = cosψ

Then the cartesian coordinates for a point in spherical coordinates is:

x1 = sinψ cos θ

x2 = sinψ sin θ

x3 = cosψ

Where 0 ≤ ψ ≤ π and 0 ≤ θ ≤ 2π

Note (Quotient space (linear algebra)). Let V be a vector space over the field F . If N is a subspace of V ,
V/N is the set of equivalence classes where x ≡ y if x = y + n for some n ∈ N .

Note (Small theorem on isomorphisms).

Theorem 1.20. T : V →W where dimV = dimW . If kerT = 0, T is an isomorphism.

Proof. T is injective. T (v) = T (v′) =⇒ T (v)− T (v′) = 0 =⇒ T (v − v′) = 0 =⇒ v − v′ = 0 =⇒ v = v′.
T is surjective. dimV = dimkerT + dim imT . Then n = 0 + dim imT so imT =W .
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