5 - Limits

Kenny Workman

July 7, 2023

Problem 5.1.34.

Solution. We can prove the converse directly. If the following commutative square is a pullback:

Then the following diagram commutes for any other object A in the category where $g j=f j$.

Note there exists a unique $h: A \rightarrow E$ where $i h=j$ and $g i=f i$. This diagram collapses to:

Then A is a fork as $g j=f j$ from before. And indeed there exists a unique $h: A \rightarrow E$ where $i h=j$. This is true for any such fork in this category, which is a special case of the commutative square describe before, so E is an equalizer.

Problem 5.1.38(a).

Solution. We must show that $\left(L \xrightarrow{p_{I}} D(I)\right)_{I \in \mathbf{I}}$ is a limit cone of $D: \mathbf{I} \rightarrow \mathscr{A}$.
First we show that L is a cone; that for any $u: J \rightarrow K$ (where $J, K \in \mathscr{A}$). Dup $p_{J}=p_{K}$. We know that L is a fork of s and t (in particular it is the equalizer of s and t) so $s p=t p$. Then for any $u: J \rightarrow K$, $s_{u} p=t_{u} p$. Because $t_{u}=p r_{K}, t_{u} p=p_{K}$. Similarly, because $s_{u}=D_{u} p r_{J}, s_{u} p=D_{u} p_{J}$. Then $p_{K}=D_{u} p_{J}$ so L is a cone.

We finish by showing that L is also the limit of D. Notice that any other cone A on D is also a fork of s and t (The family of maps $\left(A \xrightarrow{f_{I}} D(I)\right)_{I \in \mathbf{I}}$ can be represented as the single $f: A \rightarrow \prod_{I \in \mathbf{I}} D(I)$ with the property $s f=t f$ equivalent to $D u f_{J}=f_{K}$ for any $\left.u: J \rightarrow K\right)$. Because L is the equalizer of s and t, there exists a unique $g: A \rightarrow L$ such that $p g=f$ for any such cone A. Then certainly $p_{I} g=f_{I}$ so L is also a limit cone.

Problem 5.1.38(b).

Solution. We first that if \mathscr{A} has binary products and a terminal object, \mathscr{A} also has finite products.
Consider $X, Y, Z \in \mathscr{A}$. Because \mathscr{A} has binary products, both the products $X \times Y$ and $(X \times Y) \times Z$ exist.
Define $X \times Y$ as the product with projections p_{X} and p_{Y} and P as the product $(X \times Y) \times Z$, with projections $p_{X \times Y}$ and p_{Z}. We will show that P also has projections $p_{X} p_{X \times Y}, p_{Y} p_{X \times Y}, p_{Z}$ onto X, Y, and Z respectively that satisfy the necessary properties so that it is also the product $X \times Y \times Z$.

We pick an arbitrary object and set of maps:

And claim that for any such diagram, there exists a unique $g: A \rightarrow P$, where $f_{X}=p_{X} p_{X \times Y} g, f_{Y}=$ $p_{Y} p_{X \times Y} g$ and $f_{Z}=p_{Z} g$.

To see $f_{X}=p_{X} p_{X \times Y} g$, we introduce a terminal object T and construct the following commutative diagram:

Where g is the map satisfying the unversal property for P as the product $(X \times Y) \times Z$. Then $g p_{X \times Y} p_{X} t_{X}=$ $f_{X} t_{X}$, because T is a terminal object, so $g p_{X \times Y} p_{X}=f_{X}$. An identical argument proves $g p_{X \times Y} p_{Y}=f_{Y}$. The result $g p_{Z}=f_{Z}$ can be seen considering $(X \times Y) \times Z$ as an ordinary binary product.

We can continue in this way to build products of any finite set of objects in \mathscr{A}.
With finite products and equalizers, the argument in $\mathbf{5 . 1 . 3 8 (a)}$ (remains the same when D has a finite number of maps $u \in \mathbf{I}$. Then D has finite limits.
(Its actually still unclear to me why we can't make products of infinite objects)

Problem 5.2.21.

Solution. We first prove $s=t$ iff there exists an equalizer of s and t the given category and its an isomorphism.
If $s=t$, the equalizer of s and t is X along with the identity 1_{X}. This equalizer is certainly a fork as $s 1_{X}=t 1_{X}$. For any other fork A with $f: A \rightarrow X$ where $s f=t f, f$ itself is the unique map such that $s 1_{X} f=t 1_{X} f$. This proves our forward argument.

If there exists an equalizer of s and t that is also an isomorphism, which we shall denote as the object E with map $i: E \rightarrow X$, then $s i=t i$. If we precompose these maps with the inverse of i denoted j, then $s i j=t i j$ is the same as $s 1_{X}=t 1_{X}$ and $s=t$, which is our desired result.

We then prove there exists an equalizer of s and t and its an isomorphism iff there exists a coequalizer of s and t and its an isomorphism. To see the forward direction, denote our equalizer as E with map $i: E \rightarrow X$ and consider the (co?)fork Y with isomoprhism 1_{Y}. Certainly $1_{Y} s i=1_{Y} t i$ and precomposing with the inverse j of i we recover the desired $1_{Y} s=1_{Y} t . Y$ is also a coequalizer as any (co?)fork A with $f: Y \rightarrow A$ where $f s=f t$ induces $f 1_{Y} s=f 1_{Y} t$.

The proof the reverse direction follows an identical structure and is left as an exercise to the reader.

Problem 5.2.22(a).

Solution. The coequalizer is the set of equivalence classes of X generated by the relation $R=\{(f(x), x) \mid x \in$ $X\}$ denoted by X^{*}, along with the map $p: X \rightarrow X^{*}$ which sends each $x \in X$ to its respective equivalence class. Indeed $p f=p 1$.

We can verify that this coequalizer is universal in this property. Consider any cofork A, with map $h: X \rightarrow A$ with $h f=h 1$.

We define our unique g as $g=x^{*} \mapsto h(x)$ where x is an arbitrary member of the equivalence class x^{*}. We can see that h and $p g$ are then the same map. $p g=x \mapsto h(x)$ such that $h(x)=h(f(x))$ by our construction of g. This is an alternative way of stating $h=x \mapsto h(x)$ where $h f=h$.

Problem 5.2.22(b).

Solution. Similar to (a), the coequalizer in Top is the space whose underlying set is the equivalence classes of X generated by the relation $R=\{(f(x), x) \mid x \in X\}$ denoted by X^{*}, along with the map $p: X \rightarrow X^{*}$ which sends each $x \in X$ to its respective equivalence class. The space X^{*} inherits the topology induced by the quotient map $\left\{U \subset X^{*} \mid p^{-1}(U)\right.$ open in $\left.X\right\}$. Because p is strongly continuous, as $U \subset X^{*}$ open in X^{*} iff $p^{-1}(U)$ open in X, p is certainly continuous.

We can verify this coequalizer is universal in this property. Consider any cofork, with continuous map $h: X \rightarrow A$ with $h f=h 1$.

Similar to (a), we define our universal map g as $g=x^{*} \mapsto h(x)$, where x is any x in the equivalence class x^{*}. We've already shown that $h(x)=g p(x)$ for any $x \in X$ in (a). Then because h is continuous (open $U \subset A \Longrightarrow h^{-1}(U)$ open in X as given) so is $g p$ and so is g.

If $X=S^{1}, f=[] \mapsto[0, x]$

Problem 5.2.24(a).

Solution. We begin by proving the forward direction. Given isomorphic $e, e^{\prime} \in \mathbf{E p i c}(A)$ we must show they induce the same equivalence relation on A.

Recall a function $h: X \rightarrow Y$ induces an equivalence relation on X defined as $\{(x, y) \mid h(x)=h(y)\}$. Then for two functions $h, h^{\prime}: X \rightarrow Y$, if $\left(h(x)=h(y) \Longleftrightarrow h^{\prime}(x)=h^{\prime}(y)\right.$ then e, e^{\prime} induce the same equivalence relation on A .

Consider the following commutative diagram showing our two objects $e, e^{\prime} \in \mathbf{E p i c}(A)$ with isomorphism $f:$

Note that $f e=e^{\prime}$ and $e=f^{-1} e^{\prime}$, using the fact that these maps commute in our category and f is an isomorphism.

If $e(x)=e(y)$, then $f^{-1} e^{\prime}(x)=f^{-1} e^{\prime}(y)$ and $e^{\prime}(x)=e^{\prime}(y)$ (as an isomorphism in Set, f is a bijection). An identical argument can be used to show the converse. Then $e(x)=e(y) \Longleftrightarrow e^{\prime}(x)=e^{\prime}(y)$ and we shown this is an alternative way of stating that e, e^{\prime} induce the same equivalence relation on A.

To see the reverse argument, that given $e, e^{\prime} \in \operatorname{Epic}(A)$ that induce the same equivalence relation on A these functions must be isomorphic, we will construct an bijection $f: X \rightarrow X^{\prime}$ such that $f e=e^{\prime}$ and $e=f^{-1} e^{\prime}$.

We define $f=e(a) \mapsto e^{\prime}(a)$ and claim this mapping is a bijection. To see f is injective, recall if $e, e^{\prime} \in \operatorname{Epic}(A)$ induce the same equivalence relation on $A, e(a)=e\left(a^{\prime}\right) \Longleftrightarrow e^{\prime}(a)=e^{\prime}\left(a^{\prime}\right)$. Then $e(a) \neq e\left(a^{\prime}\right) \Longrightarrow e^{\prime}(a) \neq e^{\prime}\left(a^{\prime}\right)$. To see f is surjective, note that e^{\prime} is surjective and if $x=e^{\prime}(a) \in X^{\prime}$ exists, certainly $e(a)$ exists. To see that f itself is well-defined, note that e is surjective. Since f is a bijection, e, e^{\prime} are isomorphic.

This proves our result, that each equivalence relation on A corresponds to an isomorphic class of functions out of A.

Problem 5.2.24(b).

Solution. Fix some group $G \in \mathbf{G r p}$ and construct the full subcategory $\operatorname{Epic}(G)$ of $G \backslash G r p$ whose objects are epics.

Our "quotient objects" in this subcategory are the isomorphism classes of epics. We will show that each such isomorphism class corresponds to a unique normal subgroup of G.

Consider two such epics ψ, ψ^{\prime} with isomorphism ϕ :

We claim $\operatorname{ker}(\psi)=\operatorname{ker}\left(\psi^{\prime}\right)$. For any $x \in G$ where $\phi^{\prime}(x)=1, \psi \phi(x)=1$ by commutativity and $\psi^{-1} \psi \phi=\phi(x)=1$ because ψ is an isomorphism. The same argument holds for the converse, so ψ and ψ^{\prime} share the same kernel.

Then because $\operatorname{ker}(\psi) \unlhd G$ for any homormorphism $\psi: G \rightarrow X$, the isomorphism class of such epics corresponds to a unique normal subgroup of G.

We now show the reverse, that each normal subgroup of G corresponds to a unique quotient object. Define $N \unlhd G$, and construct an arbitrary surjective homomorphism $\psi: G \rightarrow X$ where $\operatorname{ker}(\psi)=N$. We claim that any additional homormophism ψ^{\prime} that is surjective and shares this kernel is isomorphic to ψ. The isomorphism theorems tell us that $\psi(G) \cong G \backslash N$ and $\psi^{\prime}(G) \cong G \backslash N$. Then $\psi(G) \cong \psi^{\prime}(G)$ and this proves our result.

Problem 5.2.25(a).

Solution. Let $m: A \rightarrow B$ be a split monic. We will show this is also a regular monic. Define any $e: B \rightarrow A$ such that $e m=f m$. We claim that m is the equalizer of e and f. To see this, consider any other fork C, such that $e h=f h$, in the following diagram:

By construction, $e h=e m g$. Then $e h=1_{A} g$, so our universal map is defined as $g=e h$. Indeed to see, $e m g=f m g$, observe $e m e h=f m e h$ and by substitution $1_{A} e h=1_{A} e h$, giving us our result.

We now show that m is also a monic. For any $x, x^{\prime}: X \rightarrow A$, where $m x=m x^{\prime}$, we show $x=x^{\prime}$. Notice that since m is an equalizer for some maps s, t, the object X and map $m x$ must be a fork of these maps $(t m x=s m x)$. If we construct the diagram of this fork along with its projection g on our equalizer:

We notice that our universal g for $m x$ is exactly x and because it is unique, $m x=m x^{\prime} \Longrightarrow x=x^{\prime}$.

Problem 5.3.8.

Solution. We define $F: \mathscr{A} \times \mathscr{A} \rightarrow \mathscr{A}$ as $F=(X, Y) \mapsto X \times Y$ where $X \times Y$ is the binary product of (X, Y). Because \mathscr{A} has binary products, this assignment is straightforward.

To define assignment of morphisms, consider an additional $\left(X^{\prime}, Y^{\prime}\right) \in \mathscr{A} \times \mathscr{A}$ with morphism (f, g) : $(X, Y) \rightarrow\left(X^{\prime}, Y^{\prime}\right)$ induced by $f: X \rightarrow X^{\prime}, g: Y \rightarrow Y^{\prime}$. When we treat $X \times Y$ as any other object satisfying the properties of product $X^{\prime} \times Y^{\prime}$, the following diagram emerges:

$F((f, g))=\bar{g}$, where \bar{g} is universal map associated with $f p_{x}: X \times Y \rightarrow X^{\prime}$ and $g p_{y}: X \times Y \rightarrow Y^{\prime}$.
We can verify F satisfies the necessary axioms. For any $(A, A) \in \mathscr{A} \times \mathscr{A} . F\left(1_{(A, A)}\right)=1_{A \times A}$. We can examine the commutative diagram to verify that the universal map assigned under our definition is the same as the desired identity morphism:

To see composition, we define an additional $\left(X^{\prime \prime}, Y^{\prime \prime}\right) \in \mathscr{A} \times \mathscr{A}$ with morphism $\left(f^{\prime}, g^{\prime}\right):\left(X^{\prime}, Y^{\prime}\right) \rightarrow$ $\left(X^{\prime \prime}, Y^{\prime \prime}\right)$ induced by $f: X^{\prime} \rightarrow X^{\prime \prime}, g: Y^{\prime} \rightarrow Y^{\prime \prime}$. We wish to show that $F\left(\left(f^{\prime}, g^{\prime}\right) \circ(f, g)\right)=F\left(\left(f^{\prime}, g^{\prime}\right)\right) \circ$ $F((f, g))$

$F\left(\left(f^{\prime}, g^{\prime}\right)\right) \circ F((f, g))=\overline{\bar{g}} \bar{g} . F\left(\left(f^{\prime}, g^{\prime}\right) \circ(f, g)\right)$ is equivalent to the universal map induced by $f^{\prime} f p_{X}$ and $g^{\prime} g p_{Y}$. But it is clear from our diagram that is the same as $\overline{\bar{g}} \bar{g}$, giving us our result.

Problem 5.3.11(a).

Solution. We will show that the forgetful functor $U:$ Grp \rightarrow Set creates arbitrary limits.
To see this we define a diagram $D: \mathbf{I} \rightarrow \mathbf{G r p}$ where \mathbf{I} is any small category. For any limit cone $\left(B \xrightarrow{q_{I}} U D I\right)_{I \in \mathbf{I}}$ on $F D$, we must show there exists a corresponding limit cone $\left(A \xrightarrow{p_{I}} D I\right)_{I \in \mathbf{I}}$ on D where $U(A)=B$ and $U\left(p_{I}\right)=q_{I}$ for each $I \in \mathbf{I}$.

We know that B is the set $\left\{\left(x_{I}\right)_{I \in \mathbf{I}} \in \prod_{I \in \mathbf{I}} U D I \mid U D u\left(x_{J}\right)=x_{K}\right.$ for each $\left.U D u: U D J \rightarrow U D K\right\}$ and each $\left(B \xrightarrow{q_{I}} U D I\right)$ is the projection map.

Then there is a unique group structure we can impose on A that satisfies the desired properties. We know $p_{I}: \prod_{I \in \mathbf{I}} D I \rightarrow D I$ is defined as $\left(x_{I}\right)_{I} \mapsto x_{I}$. Then for each $a, a^{\prime} \in A, p_{I}\left(a \circ a^{\prime}\right)=p_{I}(a) \circ p_{I}\left(a^{\prime}\right)=x_{I} \circ x_{I}^{\prime}$ for each $I \in \mathbf{I}$. So $a \circ a^{\prime}=\left(x_{I} \circ x_{I}^{\prime}\right)_{I \in \mathbf{I}}$. A similar argument recovers inverses for each element and the identity for our group and we have our result.

Problem 5.3.11(b).

Solution. We will show that the forgetful functor $U: \mathbf{A b} \rightarrow$ Set creates arbitrary limits.
We can reuse much of the previous argument but must verify that the group structure we define is abelian. As before, $a, a^{\prime} \in A, p_{I}\left(a \circ a^{\prime}\right)=p_{I}(a) \circ p_{I}\left(a^{\prime}\right)=x_{I} \circ x_{I}^{\prime}$ for each $I \in \mathbf{I}$. So $a \circ a^{\prime}=\left(x_{I} \circ x_{I}^{\prime}\right)_{I \in \mathbf{I}}$. But each $D I$ is abelian, so $\left(x_{I}^{\prime} \circ x_{I}\right)_{I \in \mathbf{I}}$ for each $I \in \mathbf{I}$ so certainly $\left(x_{I}^{\prime} \circ x_{I}\right)_{I \in \mathbf{I}}$. Then $a \circ a^{\prime}=a^{\prime} \circ a$.

