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1 Basics

Definition 1.1. The sample space Ω is the set of outcomes from an experiment. Each point is denoted ω
and subsets, eg. A ⊂ Ω are called events.

Definition 1.2 (Axioms of Probability). A function P : Ω → R that assigns a real number to each event
A ⊂ Ω is called a probability function or probability measure if it satsifies these three axioms:

1. Non-negativity. P(A) ≥ 0 for every event A

2. Normalization. P(Ω) = 1.

3. Additivity. P(A ∪B) = P(A) + P(B) if A ∩B = ∅.

It is incredible, and not obvious, that much of probability is built up from these only these three axioms

Example 1.3. It’s actually tricky to show P(A ∪B) = P(A) + P(B)− P(A ∩B) with these three facts:

P(A ∪B) = P(ABc ∩AB ∩AcB)

= P(ABc) + P(AB) + P(AcB)

= P(ABc) + P(AB) + P(AcB) + P (AB)− P (AB)

= P(ABc ∪AB) + P(AcB ∪AB)− P (AB)

= P(A) + P(B)− P (AB)

Another simple idea is that events that are identical at the limit should have identical probabilities.

Theorem 1.4 (Continuity of Events). If An → A then P(An) → P(A).

Proof. Let An be monotone increasing: A1 ⊂ A2 ⊂ . . . . Let A = limn→∞An =
⋃∞

i=1Ai.

Construct disjoint sets Bi from each Ai where B1 = A1 and Bn = {ω ∈ Ω : ω ∈ An, ω /∈
⋃i−1

i=1 Ai}. It
will be shown that (1) each pair of Bi are disjoint, (2)

⋃n
i=1Ai =

⋃n
i=1Bi and (3) A =

⋃∞
i=1Ai =

⋃∞
i=1Bi

(Exercise 1.1).

From Axiom 3: P(An) = P(
n⋃

i=1

Ai) = P(
n⋃

i=1

Bi) =
n∑

i=1

P(Bi).

Then limn→∞ P(An) = limn→∞
n∑
P(Bn) =

∞∑
P(Bn) = P(

∞⋃
Bn) = P(A)

Definition 1.5 (Conditional Probability). If P(B) > 0, then the probability of A given B is

P(A | B) =
P(AB)

P(B)
.

Theorem 1.6 (Total Probability). If A1 · · ·Ak partition Ω, P(B) =
∑k

i=1 P(B | Ai)P(Ai)
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Note. It can be difficult to assign a probability to every subset of Ω. In practice, we only assign values to
select subsets described by a sigma algebra denoted A. This is a subset algebra with three properties:

• Non empty. ∅ ∈ A. ”Measure of the impossible.”

• Closed over unions. A1, A2 · · · ∈ A =⇒ ∪iAi ∈ A.

• Closed over complements. A ∈ A =⇒ Ac ∈ A.

Every set in A is considered measurable (by its membership in the sigma algebra). A along with Ω
comprises a measurable space, denoted by the pair (A,Ω). If the measure on A is a probability function,
importantly P(Ω) = 1, this space is also a probability space, denoted by the triple (Ω, A,P).

When Ω is the real line, the measure is often the Lebesgue measure, assigning intuitive values of ”set
length”, eg. [a, b] 7→ b− a.

Why is this important? While overly pedantic at first glance, this is the structure that explains why
continuous density functions (next section) have nonzero probabilities when integrated over intervals but
assign 0 probability to single points. The continuous measure, eg. Lebesgue measure, defined on the
underlying probability space assigns positive values to sets and 0 to single points.

Exercise 1.1. Fill in the details for Theorem 1.2 and extend to the case where An is monotone decreasing.

Proof. For any pair Bn+1 and Bn, because Bn ⊂ An and Bn+1 ∩An = ∅, it follows that Bn+1 ∩Bn = ∅.
Let

⋃n
i=1Bi =

⋃n
i=1Ai. Then

⋃n+1
i=1 Bi = (An+1 \

⋃n
i=1Ai)

⋃
(
⋃n

i=1Ai) =
⋃n+1

i=1 Ai.
For the monotone decreasing case, let An be a sequence where A1 ⊃ A2 ⊃ A3 . . . .
Observe Ac

1 ⊂ Ac
2 . . . and limn→∞An = Ω \

⋃∞
Ac

i . Construct disjoint B
c
n from Ac in the same way.

Then limn→∞ P(An) = 1−
∞∑

P(Bc
i ) = 1− P(Ac) = P(A)

Exercise 1.3. Let Ω be a sample space and A1, A2, . . . be events. Define Bn = ∪∞
i=nAi and Cn = ∩∞

i=nAi.

(a) Show B1 ⊃ B2 ⊃ B3 . . . and C1 ⊂ C2 ⊂ C3 . . .

(b) Show ω ∈ ∩∞
n=1Bn iff ω is in an infinite number of the events

(c) Show ω ∈ ∪n = 1∞Cn iff ω belongs to all of the events, except possibly a finite number of those events.

Proof. (a) Certainly ∪∞
i=1Ai ⊃ ∪∞

i=2Ai . . . and ∩∞
i=1Ai ⊂ ∩∞

i=2 . . . .

(b) Forward. Assume ω ∈ ∩∞
n=1Bn. If ω does not belong to an infinite number of events Ai, there exists

some index j past which ω /∈ Bj . Then certainly ω /∈ ∩∞
n=1Bn. Reverse. ω belonging to infinite events

means there cannot exist such a j described previously so ω ∈ Bn for all n. Indeed ω ∈ ∩∞
n=1Bn

(c) Forward. Assume ω ∈ ∪∞
n=1Cn. Then ω ∈ Cj = ∩∞

i=jAi for some j. This is another way of saying ω
is in every single event except for perhaps a finite number in Ai<j . Reverse. Let j be the index of the
largest event that ω is not in. Then ω ∈ Cn>j and certainly ω ∈ ∪∞Cn.

Note. The key idea above is this notion of ”infinitely often” (i.o.) and ”all but finitely often” (eventually)
which are two distinct structures of infinite occurence in sequences. Consider an ω that exists in every other
event (eg. just the odd indices) for infinite events and revisit its inclusion in ∩∞Bi and ∪∞Ci.

Note. lim∩ ∪ An is also referred to as the limit infimum of An. Similarly, lim∪ ∩ An is referred to as the
limit supremum of An.

Exercise 1.7. Let P(
n⋃
Ai) ≤

n∑
P(Ai). Then P(An+1∪(

n⋃
Ai)) ≤ P(An+1)+(

n∑
P(Ai))−P(An+1∩(

n⋃
Ai)) ≤

n+1∑
P(Ai)

Note. Expand a bit on the Boole inequality.

Exercise 1.9. For fixed B s.t. P(B) > 0, show P(. | B) satisfies the three axioms of probability.
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Proof. • Non-negativity. If P(B) > 0 and P(AB) > 0 for any A ⊂ Ω, certainly P(AB)
P(B) > 0.

• Normalization. P(Ω∩B)
P(B) = P(B)

P(B) = 1

• Additivity. Let AB ∩ CB = ∅, then P(AB ∩ CB) = P(AB) + P(CB). Indeed P(AB∩CB)
B = P(AB)

B +
P(CB)

B

Exercise 1.11. Suppose A and B are independent events. Show that Ac and Bc are also independent.

Proof. We are given P(AB) = P(A)P(B). Then P(Ac)P(Bc) = (1 − P(A))(1 − P(B)) = 1 − P(A) − P(B) +
P(A)P(B) = 1 − P(A ∪ B) = P(AcBc). The second to last equality uses independence of P (AB). The last
equality uses the property of set complements P (A ∪B) = P (Ac ∩Bc).

Exercise 1.13. Suppose a fair coin is tossed repeatedly until heads and tails is each encoutered exactly
once. Describe Ω and compute the probablity exactly three tosses are needed.

Proof. • The sample space is the set of binary strings with exactly one 0 and 1. For strings of length
greater than 2, these are repeated strings of 0 or 1 capped with a 1 or 0 respectively.

• By independence, each n-string has an identical probability 1
2

n
. There are two such 3-strings: 001 and

110. Using additivity, P(3 tosses) = 1
8 + 1

8 = 1
4

Exercise 1.15. The probability a child has blue eyes is 1
4 . Assume independence between children. Consider

a family with 3 children.

• If it is known that at least one of the children have blue eyes, what is the probablity that at least two
of the children have blue eyes?

• If it is know that the youngest child has blue eyes, what is the probability that at least two of the
children have blue eyes?

Proof. • Straightforward conditional probability. Let A be the event where at least one child has blue
eyes and B be the event where at least two children have blue eyes. Consider first, P(A) = 1 −
P(no child has blue eyes) = 1− 27

64 = 37
64 . Compute P(A∩B) by enumerating events 101, 111, 110 and

using additivity: 2 · 1
4

2 · 3
4 + 1

4

3
= 10

64 . Then P(B | A) = P(A∩B)
P(A) = 10

64 · 64
37 = 10

37

• Similar procedure. Let A be the event where the youngest child has blue eyes and B be as before.
Using independence, P(A) = 1

4 . (To see this rigorously, enumerate the sample space and see P(Ω |
first child blue) = 1). Now P(B ∩A) describe events 110, 101, 111 only. 7

64 · 4
1 = 7

16 .

Exercise 1.17. Show P(ABC) = P(A | BC)P(B | C)P(C)

Proof. By straightforward application of the definition of conditional probability:
P(ABC)
P(BC)

P(BC)
P(C)

P(C) =

P(ABC)

Exercise 1.19. Suppose 50% of computer users are Windows. 30% are Mac. 20% are Linux. Suppose 65%
of Mac users, 82% of Windows users and 50% of Linux users get a virus. We select a person at random and
learn they have the virus. What is the probability they are a Windows user?

Proof. Let each ω ∈ Ω be a distinct user. Then W,M,L ⊂ Ω are the users with Windows, Mac + Linux
machines. V,N ⊂ Ω are the users with and without viruses.

We want P(W | V ) =
P(V |W )P(W )

P(V )
. Compute P(V ) =

∑
X={W,M,L} P(V | X)P(X) = 0.705. Then

P(W | V ) =
0.82 · 0.50

0.705
= 0.581.
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Exercise 1.20. A box contains 5 coins, each with a different probability of heads: 0, 0.25, 0.5, 0.75, 1. Let
Ci be the event with coin i and Hi be the event that heads is recovered on toss i.Suppose you select a coin
at random and flip it.

• What is the posterior probability P(Ci | H1) for each coin?

• What is P(H2 | H1)?

• Let Bi be the event that the first heads is recovered on flip i. What is P(Ci | Bi) for each coin?

Proof. • P(H1) =
1
2 . For each coin, P(Ci | H) =

P(H | Ci)P(Ci)

P(H)
. P(H) can be worked out using total

probability:
∑

i P(H|Ci)P(Ci) =
1
2 . Then eg. the posterior P(C4 | H) = 3

4 · 1
5 · 2

1 = 3
10 .

• Note that both tosses are conditionally independent: P(H2H1 | Ci) = P(H2 | Ci)P(H1 | Ci).

P(H2 | H1) =
P(H2H1)

P(H1)
=

∑
i P(H2H1 | Ci)P(Ci)∑
i P(H1 | Ci)P(Ci)

. Because P(Ci) is uniform, we can simply to∑
i P(H2H1 | Ci)∑
i P(H1 | Ci)

. The result is

∑
i p

2
i∑

i pi
.

• Similar idea to (a).

Note. Important to see that independent events are not conditionally independent in general. Try to
construct an example.

2 Random Variables

– (kenny) TODO fix counters

Definition 2.1 (Random Variable). A random variable X is a function mapping the sample space to real
numbers: X : Ω → R.

It is important to think of the relationship between the random variable and its underlying sample space
when computing probabilities: eg. P(X = x) = P(X−1(x)) and P(X ∈ A) = P(X−1(A)).

Definition 2.2 (Cumulative Distribution Function). The CDF is the function FX : R → [0, 1] where
FX(x) = P(X ≤ x). Equivalently FX(x) = P(X−1((−∞, x]).

The CDF contains ”all the information” in a random variable. This is articulated by the following
theorem:

Theorem 2.3. For random variables X and Y with CDFs F and G, if F (x) = G(X)∀x ∈ [0, 1], then X = Y
(P(X ∈ A) = P(Y ∈ A) for each A ⊂ R).

And the behavior of the CDF, including ”all of its information” is uniquely determined by just three
properties:

Theorem 2.4. A function F : R → [0, 1] is a CDF iff it satisfies three properties:

• Non-decreasing. x2 > x1 =⇒ F (x2) ≥ F (x1)

• Normalization. limy→0 F (y) = 0 and limy→1 F (y) = 1

• Right-continuous. For any x ∈ R, F (x) = F+(x) where F+(x) = limy→x,y>x F (y)
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Proof. Starting with (iii) from the text, let A = (−∞, x] and y1, y2, . . . be a sequence where y1 < y2 . . . and
limi yi = x. By the definition of the CDF, F (yi) = P(Ai) and F (x) = P(A), where limi F (yi) is equivalent
to limy→x,y>x F (y). Observe ∩iAi = A so P(A) = P(∩iAi) = limi P(Ai) = limi F (yi) = F (x) as desired.

To see (ii), limy→−∞ F (y) = 0, define a sequence y1, y2 · · · where y1 > y2 · · · as before and y1 = y. Let
Ai = (∞, yi]. Then ∩iAi = ∅ and P(∩iAi) = P(∅) = 0. Indeed limy→−∞ F (y) = limi P(Ai) = P(∩iAi) = 0.
A similar argument shows the limit to the other direction.

For (iii), if x2 > x1 then P ((−∞, x2]) ≥ P ((−∞, x1]) and F (x2) ≥ F (x1).

The interesting direction is the reverse: a function satisfying these properties uniquely determines a
probability function. It is difficult to show in general. A concrete example is the Cantor function (Devil’s
staircase) which satisfies non-decreasing, normality and right-continuous properties but from which is difficult
to derive a measure that satisfies eg. countable additivity.

Note. A deeper measure theory course will approach this problem by defining the probablity function on an
algebra of subsets rather than on each subset directly. Refer to tools like Caratheodory’s extension theorem.

It is from these random variables that we build ”distributions”, essentially functions R → [0, 1] that obey
the three probability axioms.

Definition 2.5. If X ”takes” countably many values (eg. has a countable range) it is discrete. fX(x) =
P(X = x) is its probability mass function or PMF.

Definition 2.6. X is continuous if it has some fX that obeys three properties:

•
∫∞
−∞ fX(x) dx = 1

• ∀x ∈ R : fX(x) ≥ 0

• P(a < X < b) =
∫ b

a
fX(x) dx

fX is called the probability density function or PDF. Additionally, FX(x) =
∫ x

−∞ fX(x) dx and fX(x) =
F ′
X(x) for all points x where FX is differentiable.

The formal relation between the density function and the sample space is a bit tricky, especially when
X is continuous. In practice, we often just produce a function and deal with it directly while assuming the
underlying sample space with a well defined measure is lurking around.

Note. We learned the probability function is defined on a well-defined sample space by measuring events /
sets.

Definition 2.7. The quartile function (or inverse CDF) is F−1(q) = inf{x : q < F (x)}

We call F−1( 1/4) the first quartile, F−1( 1/2) the second quartile (or median), etc.

We will proceed with some important mass functions.

Definition 2.8 (The Point Mass Distribution). If X ∼ σa (reads ”X has a point mass distribution at a”),
fX(a) = 1 while fX(x) = 0 for all x ̸= a.

FX(x) =

{
0, x < a,

1, x ≥ a

Definition 2.9 (The Uniform Distribution). Suppose X has a mass function:

f(x) =

{
1
k , x ∈ {1 . . . k}
0, o.w.

X then has a uniform distribution on {1 . . . k}.

Definition 2.10 (The Bernoulli Distribution). If X ∼ Bernoulli(p), the PMF of X is f(x) = px(1− p)1−x

for x ∈ {0, 1} and p ∈ [0, 1].
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Here is the first instance of a parameterized random variable.

Definition 2.11 (The Binomial Distribution). Binomial variables model the number of successful flips for
n identical trials with probability p for each. We say X ∼ Binomial(n, p) with PMF:

f(x) =

{(
n
x

)
px(1− p)n−x x ∈ {1 . . . n}

0 o.w.

The following represent different ideas of unbounded ”counting”: trials until success and trials in some
interval of time.

Definition 2.12 (The Geometric Distribution). Here we have the idea of flipping a coin until our first
success. X ∼ Geometric(p) with PMF: f(x) = (1− p)x−1p

The probability value of each term is a geometric series. Indeed p
∑∞

(1− p)x = p
1−(1−p) = 1.

Definition 2.13 (The Poisson Distribution). If X ∼ Poisson(λ) with PMF f(x) = e−λ λx

x!

λ can be thought of as some interval of time. X then measures the number of events in this interval:
decaying particles or mRNA translation.

Similarly to the geometric distribution, each term in the poisson is a Taylor polynomial, derived from
the power series expansion of the exponential function. Indeed e−λ

∑∞ λx

x! = e−λeλ = 1.

Note. For distributions that count trials in some interval - some time or number of trials - the sum of
variables equals a single variable that accumulates the interval.

If X1 ∼ Binomial(n1, p) and X2 ∼ Binomial(n2, p), then X1 +X2 ∼ Binomial(n1 + n2, p).
If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2), then X1 +X2 ∼ Poisson(λ1 + λ2).

Note. Recall Ω really lurking around. Eg. let X ∼ Bernoulli and P(X = 1) is P(ω ∈ [0, p]) = p.

For the continuous distributions, useful to think of integration.

Definition 2.14 (The Continuous Uniform Distribution). If X has a uniform distribution on the interval
[a, b] with PDF:

f(x) =

{
1

b−a x ∈ [a, b]

0 o.w.

and CDF:

F (x) =


0 x < a
x−a
b−a x ∈ [a, b]

1 x ≥ b

Definition 2.15 (The Normal (Gaussian) Distribution). f(x) = 1
σ
√
2π
e−

1
2σ2 (x−µ)2

Note. If X ∼ N(0, 1) we say that X has a standard Normal distribution. We often denote X as Z
with ϕ and Φ as the PDF and CDF.

There is no closed form function for Φ, so we use precomputed values from tables or rely on statistical
programs. Calculations with Normal distributions then proceed by reexpressing X as some function of Z
and using these values.

The following facts are essential when manipulating these variables:

• If X ∼ N(µ, σ), then Z = X−µ
σ ∼ N(0, 1)

• If Z ∼ N(0, 1), then X = µ+ σZ ∼ N(µ, σ)

• If Xi ∼ N(µi, σi) are independent, then X =
∑

iXi ∼ N(
∑

i µ,
∑

i σ)

Definition 2.16 (The Exponential Distribution). If X ∼ Exp(β), then f(x) = 1
β e

− x
β .
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Indeed
∫

Note (The Gamma Function). We often want a continuous extension of the factorial to real arguments,
where Γ(x) = (x− 1)! for x ∈ Z+. This is the gamma function and defined Γ(x) =

∫∞
0
yx−1e−ydy.

Evaluating the integral for Γ(1),Γ(2) . . . is a useful exercise to convince oneself of agreement with the
factorial.

For example, Γ(3) =
∫∞
0
y2e−ydy. Using integration by parts, this evaluates to [−y2e−y−2ye−y−2e−y]∞0 .

Using L’Hopital’s, the first two terms drop out and we are left with Γ(3) = 2 = (3− 1)! as desired.

Equipped with the gamma function, we can now develop the gamma distribution.

Definition 2.17 (Gamma Distribution). Let α, β > 0. A continuous random variable X is said to have a
Gamma distribution with shape parameter α and scale parameter β, denoted

X ∼ Γ(α, β),

if its probability density function is

fX(x) =
1

βα Γ(α)
xα−1 e− x/β , x ≥ 0.

If Xi ∼ Γ(αi, β) are independent,
∑

iXi = Γ(
∑
αi, β).

The exponential distribution is then just a special case of a gamma distribution with α = 1.

Note. The Gamma-normalization comes from evaluating∫ ∞

0

xα−1 e−x/β dx.

We make the substitution
x = β t, dx = β dt,

so that ∫ ∞

0

xα−1e−x/β dx =

∫ ∞

0

(βt)α−1 e−t (β dt) = βα−1 β

∫ ∞

0

tα−1e−t dt = βα Γ(α).

Hence in the density

f(x) =
1

βα Γ(α)
xα−1 e−x/β

the factor βα Γ(α) is exactly the normalizing constant that makes
∫∞
0
f(x) dx = 1.

Definition 2.18 (X2 Distribution). X has a X2 distribution with p degrees of freedom if the PDF is

f(x) =
1

Γ(p2 )2
p
2

x
p
2−1e

x
2

Let p > 0. A random variable X is said to have a χ2 distribution with p degrees of freedom, denoted X ∼ χ2
p,

if its probability density function is

fX(x) =
1

2 p/2 Γ
(
p
2

) x p
2−1 e−x/2, x > 0.

This distribution is the sum of squared, independent normals. If Zi ∼ N(0, 1) then
∑

i Z
2
i ∼ X2

p.

Definition 2.19 (Independence of Random Variables). If P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B), we say
X and Y are independent, written X |= Y .

Exercise 2.5. Let X and Y be discrete random variables. Show X and Y are independent iff fX,Y (x, y) =
fX(x)fY (y)
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Proof. If P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) for every subset A,B, let A = {x} and B = {y} for
every possible pair of elements. Then fX,Y (x, y) = fX(x)fY (y). To see the reverse, P(X ∈ A, Y ∈ B) =∑

x∈A

∑
y∈B fX,Y (x, y) =

∑
x∈A fX(x)

∑
y∈B fY (y) = P(X ∈ A)P(Y ∈ B)

Theorem 2.20. Suppose the range of X and Y is a (potentially infinite) rectangle. If we can express
fX,Y = g(x)h(y), then X and Y are independent.

Proof. Start by computing the marginals. fX =
∫
g(x)h(y)dy = g(x)(

∫
h(y)dy) and fY =

∫
g(x)h(y)dx =

h(y)(
∫
g(x)dx).

Then fXfY = g(x)(
∫
h(y)dy)h(y)(

∫
g(x)dx) = g(x)h(y)(

∫ ∫
h(y)g(x)dxdy). Because g(x)h(y) = fX,Y ,

the integration term evaluates to 1. Then fXfY = g(x)h(y)(
∫ ∫

h(y)g(x)dxdy) = g(x)h(y)(1) = fX,Y which
is exactly the condition for independence of X and Y .

In the above problem, notice the significance of requiring the range to be a rectangle. Any other region
would produce integration limits in one variable that are functions of the other variable and you can no
longer pull out the integration terms from the maringals:

fX(x) = g(x)
[∫ 1

y=x2

h(y) dy︸ ︷︷ ︸
a function of x

]
.

Definition 2.21 (Transformation of Continuous R.V.). When Y and X are continuous.

• Find Ay = {x : r(x) ≤ y} for each y ∈ R

• Then FY (y) = P(r(X) ≤ y) =
∫
Ay
fXdx

• fY = F ′
Y

Exercise 2.1. Show P(X = x) = F (x+)− F (x−)

Proof. The key here is to see limz<x,z→x F (z) = P(X ∈ ∪i(∞, zi]) = P(X < x) for some sequence z1, z2, · · ·
where limi zi = xi. While limy>x,y→x F (y) = P(X ∈ ∩i(∞, yi]) = P(X ≤ x).

Pay attention to the behavior of converging sets and the boundary. In the right-continous case, the
sequence is approaching the boundary x from above and each sequence is closed on x. Therefore in the limit,
they include x.

In the left-continuous case, the sequence is approaching the boundary x from below and each sequence
excludes x. Therefore in the limit, they exclude x.

To conclude F (x+) − F (x−) = P(X ≤ x) − P(X < x) = P(X = x). Of course, if X is continuous,
F (x+) = F (x−) and P(X = x) = 0, showing once again that every real value has no probability mass.

Exercise 2.4. Let X have density

fX(x) =


1
4 , 0 < x < 1,
3
8 , 3 < x < 5,

0, o.w.

• Find the CDF of fX

• Let Y = 1
X . Find fY .

Proof. •

FX(x) =


1
4x, 0 < x < 1,
1
4 , 1 < x < 3,
3
8 (x− 3) + 1

4 , 3 < x < 5

1, x ≥ 5
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FY (y) =


0, y < 1

5 ,
3
8 (5−

1
y ),

1
5 < y < 1

3 ,
6
8 ,

1
3 < y < 1,

1
4 (1−

1
y ) +

6
8 , 1 < y,

Then to compute fY (y) = F ′
Y (y), we differentiate:

0, y < 1
5 ,

3
8y2 ,

1
5 < y < 1

3 ,

0, 1
3 < y < 1,

1
4y2 , 1 < y,

Exercise 2.7. Let X and Y be independent and suppose each is Uniform(0, 1). Let Z = min{X,Y }. Find
the density fZ(z).

• Proof. P(Z > z) = P(X > z, Y > z) = P(X > z)P(Y > z). Then, P(Z > z) = (1− z)2 and FZ = 1− P(Z >
z) = 1− (1− z)2. fZ = F ′

Z = −2z + 2

Exercise 2.9. Let X ∼ Exp(β). Find F (x) and F−1(q).

Proof. f(x) = 1
β e

1/β . So F (x) =
∫ x

0
f(x)dx = 1− e−x/β .

F is a bijection over the interval [0,∞) so we can find a genuine inverse F−1 as −β ln(1− q).

Plugging in a few numbers to get a feel for F−1(q), we see that F−1(0.99) = β4.6 and F−1(0.9999) = β9.2,
confirming that linear changes in sample space value have exponential effect in probability and that eg.
increasing β decreases likelihood of events by stretching the density.

Exercise 2.11. Flip a coin once with probability heads of p. Let X and Y be the number of heads and
tails.

• Show X and Y are independent

• Let N ∼ Poisson(λ) be the number of coin flips. Show now that X and Y are independent

Proof. (a) One toss. Because Y = 1−X,

P{Y = 1 | X = 1} = 0 ̸= P{Y = 1} = 1− p,

so X and Y are dependent.

(b) Random number N ∼ Poisson(λ).
Step 1 (conditional pmf). Given N = k,

P{X = x, Y = y | N = k} = 1{x+y=k}

(
k

x

)
px(1− p)y.

Step 2 (unconditional pmf). Summing over k, only the term k = x+ y remains:

P{X = x, Y = y} = e−λ λx+y

(x+ y)!

(
x+ y

x

)
px(1− p)y = e−λ (λp)

x

x!
e−λ

(
λ(1− p)

)y
y!

.

Step 3 (marginals). Hence

X ∼ Poisson(λp), Y ∼ Poisson
(
λ(1− p)

)
,

and P{X = x, Y = y} = P{X = x}P{Y = y}, so X and Y are independent.

9



Exercise 2.13. Let X ∼ Normal(0, 1) and Y = eX .

• Find fY and plot it.

• Generate 10,000 random draws from X. Create a histogram of these draws and compare to the density
plot.

Proof. Because r = ex is a strictly monotonically increasing function, we can apply fY = fX(s(x))s′(x)

where s = r−1. Then fY (y) = fX(ln(y)) 1y . Using the standard normal density, fY (y) =
1√
2πy

e−
(ln y)2

2

0 10 20 30 40 50 60
y

0.0

0.2

0.4

0.6

0.8

de
ns

ity

Histogram of Y = eX (X N(0, 1)) with log-normal pdf overlay
simulated Y
theoretical pdf

Figure 1: Histogram of Y = eX overlaid with its log-normal density.

Note. It is worth understanding why fY = fX(s(x))s′(x) can be used when r is a strict monotonically
increasing or decreasing function. This condition forces s to be differentiable and single-valued for the
single-variable change-of-variable integration.

Exercise 2.15. • Let X have a continuous, strictly increasing CDF F . Let Y = F−1(X). Find the
density of Y .

• Now let U ∼ Uniform(0, 1). Let X = F−1(U), where F is no longer the CDF of X but is still
continuous and strictly increasing. Show FX = X.

• Write a program to generate Exponential(β) random variables from Uniform(0, 1)

Proof. • P(Y ≤ y) = P(F (X) ≤ y) = P(X ≤ F−1(y)) = F (F−1(y)) So Fy = 1.

• P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = FU (F (x)) = F (x)

• Using the fact that X = F−1(U) has CDF F , we compute the exponential CDF and find its inverse:
F−1
X (q) = −β ln(1 − β2q). A histogram of generated values, overlayed against the exponential PDF,

can be found below.
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Figure 2: Histogram of generated exponentials overlayed against theoretical PDF

Exercise 2.16. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) be independent random variables. Find the
density of X given X + Y = n. Use the fact that X + Y ∼ Poisson(λ + µ) and P(X = x,X + Y = n) =
P(X = x, Y = n− x).

Proof. We are interested in the quantity P(X = x,X + Y = n|X + Y = n). Observe P(X + Y = n) =

e−(λ+µ) (λ+µ)n

n! . And P(X = x,X + Y = n) = P(X = x, Y = n − x) = P(X = x)P(Y = n − x) =

e−λ λx

x! e
−µ µn−x

(n−x)! .

Our conditional distribution is then the expression:

e−λe−µ λx

x!
µn−x

(n−x)!

e−(λ+µ) (λ+µ)n

n!

Simplifying we begin to see the shape of the binomial:

λx

x!

µn−x

(n− x)!

n!

(λ+ µ)n

n!

(n− x)!x!

λxµn−x

(λ+ µ)n

n!

(n− x)!x!

λxµn−x

(λ+ µ)n−x(λ+ µ)x

This is
(
n
x

)
( λ
λ+µ )

x( µ
λ+µ )

(n− x) or Binomial(n, λ
λ+µ ).

Exercise 2.20.

3 Expectation

3.1 Expectation of a Random Variable

Definition 3.1. The expected value (or mean or first moment) of X is defined as

E [X] =

∫
xdFX(x) =

{∑
x xf(x), if X is discrete∫

x
xf(x)dx, if X is continuous

11



Assuming the sum or integral is well-defined, we use the following notation to denote the expected value
of X: E [X] = µ = µX

3.2 Properties of Expectation

Theorem 3.2. E [
∑

iXi] =
∑

i E [X]i

Theorem 3.3. If X1 . . . Xi are independent, E [
∏
Xi] =

∏
i E [X]i

Note. Work out the above briefly and note why we need independence for the product and not the sum.
Eg.

∫
(x+y)fX,Y vs.

∫
xyfX,Y . Integration is additive but factorization of the joint PDF/PMF is necessary

for the product terms.

3.3 Variance and Covariance

Definition 3.4. The variance of X is defined as

E
[
(X −E [X])2

]
and is denoted as σ2

X or σ2 or Var [X]

Theorem 3.5. Assuming the variance of X is well-defined, it has the following properties:

• Var [X] = E
[
X2

]
−E [X]

2

• Var [aX + b] = a2 Var [X]

• If X1 . . . Xn are independent, Var [
∑

i aiXi] =
∑

i a
2
i Var [Xi]

Proof. • E
[
(X − µ)2

]
= E

[
X2 − 2Xµ+ µ2

]
= E

[
X2

]
− µ2

• E [(aX + b)−E [aX + b]]
2
= E

[
(aX + b− aµ+ b)2

]
= E

[
(a(X − µ))2

]
= a2 E

[
(X − µ)2

]
= a2 Var [X]

• Var [
∑

i aiXi] = E
[
(
∑

i aiXi −E [
∑

i aiXi])
2
]
. Using additivity of expectation, E [

∑
i aiXi] =

∑
i ai E [X]i.

Then our expression becomes E
[
(
∑
aiXi − ai E [X]i)

2
]
. Expanding this expression, we arrive at

E
[∑

i(aiXi − ai E [X]i)
2 +

∑
i,j aiaj(Xi −E [X]i)(Xj −E [X]j)

]
. The first set of terms become

∑
i a

2
i Var [X]i

and the second set of terms drop out when expanded as every pair of variables are independent.
(E [XiXj ]−E [X]i E [X]j = 0).

Definition 3.6. Let X1 . . . Xn be random variables. The sample mean is then

X̄n =
1

n

∑
i

Xi

And the sample variance is

S2
n =

1

n− 1

∑
i

(Xi − X̄n)
2

Theorem 3.7. If X1 . . . Xn are i.i.d. and E [Xi] = µ and Var [Xi] = σ2, then E
[
X̄n

]
= µ, Var

[
X̄n

]
= σ2

n ,

and E
[
S2
n

]
= σ2.

Proof.

E
[
X̄n

]
=

1

n

∑
i

E [Xi] = µ

Var
[
X̄n

]
=

1

n2

∑
i

Var [Xi] =
σ2

n

12



Notice
∑

i(Xi−X̄n)
2 =

∑
i(X

2
i −2XiX̄n+X̄n) =

∑
i(X

2
i )−2

∑
iXiX̄n +

∑
i X̄n

2
. The inner term becomes

2X̄nnX̄n = 2nX̄n
2
. So:

E
[
S2
n

]
= E

[
1

n− 1

∑
i

(Xi − X̄n)
2

]
=

1

n− 1

∑
i

E
[
X2

i

]
−E

[
X̄n

2
]
=

1

n− 1
n[(σ2 − µ2)− (

σ2

n
− µ2)] = σ2

Note. So what’s up with the 1
n−1?

Natural way to introduce ”degrees of freedom”. Consider the vector of residuals ri = Xi − X̄n. We
actually ”use up” one of these residuals in the following way.

Notice the sum of our residuals evaluates to 0.

n∑
i=1

(Xi − X̄n) =

n∑
i=1

(Xi −
1

n

n∑
i=1

Xi) =

n∑
i=1

Xi −
n∑

i=1

Xi = 0

This is just algebra and comes from the fact that our mean is not the true mean rather estimated from
data. So after picking n− 1 such ri, the last rn must equal −

∑n−1
i=0 ri for this identity to hold.

We then say that the sum of residuals,
∑

i ri, used within the S2
n statistic has only n − 1 ”degrees of

freedom”. It is common shorthand to also say the variance estimate itself (S2
n) also has n − 1 degrees of

freedom.

Definition 3.8. Let X and Y be r.v.s with means µX , µY and standard deviations σX , σY . The covariance
of X and Y is then:

Cov(X,Y ) = E [(X − µX)(Y − µY )]

The correlation is then:

ρ = ρX,Y =
Cov(X,Y )

σXσY

Theorem 3.9. Cov(X,Y ) = E [XY ]−E [X]E [Y ] and ρX,Y satisfies −1 ≤ ρX,Y ≤ 1. If Y = aX+ b, where

a, b are constants, then ρX,Y =

{
−1, a < 0

1, a > 0
. If X,Y are independent, then Cov(X,Y ) = 0, although the

converse need not be true.

Theorem 3.10 (Variance of a sum). Var [X + Y ] = Var [X] + Var [Y ] + 2Cov(X,Y ). More generally
Var [

∑
i aiXi] =

∑
i a

2
i Var [Xi] +

∑∑
i<j 2 ∗ ai ∗ ajCov(Xi, Xj)

3.4 Expectation and Variance of Important Random Variables

3.5 Conditional Expectation

Definition 3.11 (Conditional Expectation).

Definition 3.12 (The Law of Iterated Expectation). E [E [X|Y ]] = E [X]

Definition 3.13.

Example 3.14. Suppose we pick a county from the US at random and choose n people from it. Let X be
the number of these people with a disease. Let Q be the proportion of people in the county with the disease.
Then X given Q = q is Binomial(n, q). E [X|Q = q] = nQ and Var [X|Q = q] = nQ(1−Q).

Suppose now Q ∼ Uniform(0, 1). This is a hierarchical model. E [X] = E [E [X]] = E [nQ] = n
2 .

Var [X] = Var [E [X|Q]] +E [Var [X|Q]].

Var [E [X|Q]] = Var [nQ] = n2 E [Q] = n2
1

12
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E [Var [X|Q]] = E [nQ(1−Q)] = nE
[
Q−Q2

]
=

∫
q − q2dq =

n

6

Then:

Var [X] =
n

6
+
n2

12

3.6 Moment Generating Functions

Definition 3.15 (The Moment Generating Function). The MGF, or Lapace Transformation, of X, is
ψXt = E

[
etX

]
=

∫
etXdFXdx where t varies over R.

We will use the MGF to compute the moments of X. Assuming ψ is well defined on the open interval
around t = 0, ψ′

X(0) = d
dt E

[
etX

]
|t=0 = E

[
d
dte

tX
]
|t=0 = E

[
XetX

]
|t=0 = E [X].

Swapping differentiation with expectation when ψ is well defined in this interval is a fact we will assume
for now but (hopefully) will return to later.

Theorem 3.16 (Properties of the MGF).

If Y = aX + b, then ψY (t) = ebψX(at)

Theorem 3.17. Let X and Y be random variables. If ψX(t) = ψY (t) for all t, then X and Y are equal in
distribution.

I view the above fact as another way of saying if X and Y have identical moments, they must have the
same distribution.

3.7 Exercises

Exercise 2.1. Assume we have some fortune c and we play a game where each turn we half or double our
money with even probability. Compute the expected value of the resulting fortune after n turns.

Proof. Let Xn be our random variable and see P(Xn = c ∗ 2n−2x) =
(
n
x

)
2−n. The density is binomial with

support c ∗ 2n−2x ranging over x = 0 to x = n. The 2−n expression comes from simplifying the standard
1
2

x 1
2

n−x
. Similar for 2n−2x

Then E [Xn] =
∑n

x=0 c ∗ 2n−2x
(
n
x

)
2−n. Simplifying the obvious things, we have c

∑n
x=0 2

−2x
(
n
x

)
.

Exercise 2.2. Show Var [X] = 0 iff exists some constant c where P(X = c) = 1.

Proof.

Exercise 2.3. Let X1 . . . Xn be i.i.d. Uniform(0, 1) and Yn = max{X1 . . . Xn}. Compute E [Yn].

Proof. Observe FYn
= P(max{X1 . . . Xn} ≤ y) = yn. (It is helpful to see also that P(min{X1 . . . Xn} ≤ y) =

1− (1−y)n). Then fYn
= dFYn

= d(yn)
dy = nyn−1. E [Yn] =

∫
ydYn

dy =
∫
nyndy = [ n

n+1y
n+1]1y=0 = n

n+1 .

Exercise 2.4.

Proof.

Note. Another approach is invoking the ”rule of the lazy statistician”, eg. EY =
∫
r(x)fX1...Xndx1 . . . dxn.

In two dimensions, this calculation is trivial as the density can be evaluated as a piecewise integral over two
halves of the unit square (those halves separated by a line through the diagonal). 2

∫ ∫
x1>x2

x1dx2dx1 =

2 ∗ 1
3 = 2

3 as expected for E [Y2]

Exercise 2.5. Flip a fair coin until you encounter a heads. Compute the expected value of the number of
tosses.
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Proof. Let X be the random variable holding the number of tosses. See that P(X = x) = 1
2

x
. Then

E [X] =
∑∞

x=1
x
2x . To compute this series, recognize a general form of a geometric series can be expressed

as G(r) =
∑∞

x=1 r
x = 1

1−r .

We need to rearrange things a bit: First, we take the derivative to pull out an x: d(G(r))
dr =

∑∞
x=1 xr

x−1 =
(1− r)−2. Then we multiply by r:

∑∞
x=1 xr

x = r ∗ (1− r)−2. When r = 1
2 , this expression is equivalent to

the series of our expectation. E [X] = 2

Exercise 2.7. Let X be a continuous random variable where P(X < 0) = 0 and the expectation exists.
Show E [X] =

∫∞
x=0

P(X ≥ x)dx.

Proof. Observe
∫∞
x=0

P(X ≥ x) =
∫∞
x=0

(1−F (x))dx. This evaluates to [(1−F (x))x]∞x=0−
∫∞
x=0

(−fX(x))xdx us-

ing integration by parts. Observing that limx→∞ x
(
1−FX(x)

)
= 0, this expression simplifies to

∫∞
x=0

xfX(x)dx =
E [X] as desired.

Note. This is the tail-sum expression of expectation that will come in handy later.

Exercise 2.12. Compute E [X] and Var [X] when X is Poisson, Exponential.

Proof. Let X ∼ Poisson(λ). Recall ex =
∑∞

n=0
xn

n! using the Maclaurin series for ex. We are interested in∑∞
x=0 xfX(x) =

∑∞
x=0 x

λx

x! e
−λ for E [X]. Notice the Maclaurin series for xex is nxn

n! . Then e
−λ

∑∞
x=0

xλx

x! =
e−λλeλ = λ as desired.

To compute Var [X], we are instructed to first find E [X(X − 1)]. Notice E
[
X2

]
= E [X(X − 1)]+E [X].

E [X(X − 1)] =

∞∑
x=0

x(x− 1)λx

x!
e−λ

Simplify and notice this looks like a ”shifted” form of the Maclaurin series for eλ. The first two terms
are 0, so we can start our counter at x = 2:

∞∑
x=2

λx

(x− 2)!
e−λ

Factoring out a λ2 we arrive at the familiar series:

e−λλ2
∞∑
x=2

λ(x−2)

(x− 2)!
= e−λλ2eλ = λ2

Indeed, E
[
X2

]
= E [X(X − 1)] + E [X] = λ2 + λ. So Var [X] = E

[
X2

]
− E [X]

2
= λ2 + λ − λ2 = λ a

desired.
Now let X ∼ Exp(β). Recall fX(x) = 1

β e
− x

β . Then E [X] =
∫
x>0

x
β e

− x
β dx Using integration by parts,

1
β

∫
xe

−x
β = 1

β [−βxe
−x
β − β2e

x
β

∣∣∣∞
x=0

] = 1
β ∗ β2 = β as desired.

Now we approachVar [X] = E
[
X2

]
−E [X]

2
. First we computeE

[
X2

]
=

∫
x>0

x2

β e
− x

β dx = 1
β

∫
x>0

x2e−
x
β .

Again using integration by parts we arrive at:

1

β
(−βx2e

−x
β −

∫
(−β)2xe

−x
β )

∣∣∣∣∞
x=0

=

1

β
(−βx2e

−x
β + 2β(−βxe

−x
β − β2e

−x
β ))

∣∣∣∞
x=0

=

1

β
(−βx2e

−x
β − 2β2xe

−x
β − 2β3e

−x
β ))

∣∣∣∞
x=0

=

1

β
(2β3) = 2β2

Then Var [X] = E
[
X2

]
−E [X]

2
= 2β2 − β2 = β2 as desired.
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Exercise 2.13. Suppose we generate a random variable in the following way. We flip a fair coin. If heads,
X ∼ Uniform(0, 1), and if tails, X ∼ Uniform(3, 4). Find the mean and standard deviation of X.

Proof. Let Y ∼ Bernoulli(0.5) represent the coin flip. E [X] = E [E [X|Y ]] = 0.5 ∗ E [X|Y = 0] + 0.5 ∗
E [X|Y = 1] = 0.5 ∗ 0.5 + 0.5 ∗ 3.5

Var [X] = E [Var [X|Y ]] + Var [E [X|Y ]]. E [Var [X|Y ]] = 0.5 ∗ 1
12 + 0.5 ∗ 1

12 = 1
12 . Var [E [X|Y ]] =

E
[
(E [X|Y ]−E [X])2

]
= 0.5∗(0.5−2)2+0.5∗(3.5−2)2 = 1.52. Var [X] = E [Var [X|Y ]]+Var [E [X|Y ]] =

1
12 + 2.25 = 2.33 σX = 1.53

Exercise 2.21. Let X,Y be random variables. Suppose E [Y |X] = X. Show Cov(X,Y ) = V ar(X).

Proof. Cov(X,Y ) = E [XY ]−E [X]E [Y ]. Recognize E [XY ] = E [E [XY |X]]. Evaluating the inner expec-
tation E [XY |X] = X E [Y |X] = X2. Then, E [XY ] = E

[
X2

]
. Similarly, E [X]E [Y ] = E [X]E [E [Y |X]] =

E [X]E [X]. So the expression collapses to E
[
X2

]
−E [X]

2
= Var [X].

Exercise 2.23. Find the MGFs for Poisson, Normal and Gamma distributions.

Exercise 2.24. Let X ∼ Poisson(λ). Then ψX(t) = E
[
eXt

]
=

∑∞
x=0 e

Xte−λ λx

x! . Recognize
∑∞

x=0
extλx

x! =∑∞
x=0

(etλ)x

x! is the Maclaurin series for eλe
t

. Then e−λ
∑∞

x=0 e
Xt λx

x! = e−λee
tλ = eλ(e

t−1).
Let X ∼ Normal(µ, σ2).

Exercise 2.6. Prove the rule of the lazy statistician in the discrete case.

Proof. Let Y = r(X). E [Y ] =
∑

y∈Y yP(Y = y). For any given y, y∗P(Y = y) =
∑

x∈r−1(y) r(x)P(X = x) =

r(x)
∑

x∈r−1(y) P(X = x). Then
∑

y∈Y yP(Y = y) =
∑

y∈Y

∑
x∈r−1(y) r(x)P(X = x) =

∑
x∈X r(x)P(X =

x).

Exercise 2.15. Let

fX,Y =

{
1
3 (x+ y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

0, o.w.

and find Var [2X + 3Y + 8].

Proof. The main idea is Var [2X + 3Y + 8] = 4Var [X]+9Var [Y ]+2 ∗ 2 ∗ 3Cov(X,Y ). The rest is tedious
algebra.

The following calculations are important: E [X] = 5
9 E

[
X2

]
= 7

18 E [Y ] = 11
9 E

[
Y 2

]
= 16

9 Var [X] = 13
162

Var [Y ] = 23
81 E [XY ] = 2

3 Cov(X,Y ) = − 1
81

Plugging things back in, we arrive at 245
81 .

Exercise 2.16. Let r(x) and s(y) be functions of x and y. Show that E [r(X)s(Y )|X] = r(X)E [s(Y )|X].
Then show E [r(X)|X] = r(X).

Proof. E [r(X)s(Y )|X] =
∫
r(x′)s(y)fX,Y |X(x′, y|x)dx′dy. Pay careful attention to the use of x′ and x.

We integrate over all x′ in X where as x is provided by the conditioning X (and may be fixed in future
calculations).∫

r(x′)s(y)fX,Y |X(x′, y|x)dx′dy =
∫
r(x′)s(y)fY |X(y|x′)fX|X(x′|x)dx′dy by the chain rule of conditional

densities. Now observe when x is fixed, eg. in the expression E [r(X)s(Y )|X = x], fX|X(x′|x) becomes 1X=x

and X degenerates to X = x. Indeed, E [r(X)s(Y )|X = x] = r(x)
∫
s(y)fY |X(y|x′)dx′dy = r(x)E [s(Y )|X].

When X is not fixed, E [r(X)s(Y )|X] = r(X)E [s(Y )|X]

Exercise 2.19.

Proof. E
[
X̄n

]
= 1

n ∗ n ∗E [Xi] = E [Xi] Var
[
X̄n

]
= 1

n2 ∗ n ∗Var [Xi] =
1
n Var [Xi]
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Figure 3: Expectation and variance of statistic as function of n
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Figure 4: Sampling distribution for increasing n

Exercise 2.22. Let 0 < a < b < 1 and X ∼ Uniform(0, 1). Let

Y =

{
1, 0 < X < b,

0, otherwise,
Z =

{
1, a < X < 1,

0, otherwise.

• Show Y and Z are not independent.

• Evaluate E [Y |Z]

Proof. • P(Y = 1, Z = 1) = b− a ̸= P(Y = 1)P(Z = 1) = a ∗ (1− a)

• E [Y |Z] =

{
b−a
2−a , Z = 1,

1, Z = 0.
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4 Inequalities

4.1 Probability Inequalities

Definition 4.1 (Markov’s Inequality). For some nonnegative r.v. X and t > 0:

P(X ≥ t) ≤ E [X]

t

Definition 4.2 (Chebyshev’s Inequality). Let µ = E [X] and σ2 = Var [X], then

P(|X − µ| ≥ t) ≤ σ2

t2

and

P(|Z| ≥ k) ≤ 1

k2

where Z = X−µ
σ . In particular, P(Z ≥ 2) ≤ 1

4 and P(Z ≥ 3) ≤ 1
9

Proof.
E[(X−µ)2]

t2 ≥ P((X − µ)2 ≥ t2) = P(|X − µ| ≥ t). The second case comes from t = kσ: P(|X − µ| ≥
kσ) ≤ σ2

k2σ2 . Then P(|Z| ≥ k) ≤ 1
k2

Definition 4.3 (Hoeffding’s Inequality). Let Y1 . . . Yn be independent observations s.t. E [Yi] = 0 and

ai ≤ Yi ≤ bi. Let ϵ > 0. For any t > 0, P((
∑n

i=0 Yi) ≥ ϵ) ≤ e−tϵ
∏n

i=0 e
t2

(ai−bi)

8

Definition 4.4 (Bernoulli Presentation of Hoeffding’s Inequality). Let X1 . . . Xn ∼ Bernoulli(p) with ϵ > 0.
Then:

P(|X̄n − p| ≥ ϵ) ≤ 2e−2nϵ2

Proof. Using Markov’s bound, P(
∑n

i=0 Yi ≥ tϵ) = P(e
∑n

i=0 Yi ≥ etϵ) ≤ E[e
∑n

i=0 Yi ]
etϵ = e−te

∏n
i=0 e

tYi .
Now consider E

[
etYi

]
. We know ai ≤ Yi ≤ bi, so we can express Yi as a convex combination Yi =

(1 − α)ai + αbi where α = Yi−ai

bi−ai
. Because ex is a convex function, etYi ≤ (1 − α)etai + αetbi . Because

E [Yi] = 0, E [α] = −ai

bi−ai
. Indeed, E

[
etYi

]
≤ E

[
(1− α)etai + αetbi

]
= bie

ai−aie
bi

bi−ai
= eg(u) for some u, g.

We will make use of the exact form of Taylor’s theorem: if g is a smooth function then there is a number

ξ ∈ (0, u) such that g(u) = g(0) + ug′(0) + u2

2 g
′′(ξ).

Some algebra is needed to bie
ai−aie

bi

bi−ai
= eg(u)

Note. Our bounds, like Hoeffding’s, are statements about tail probabilities P(|µ̂ − µ| ≥ ϵ) ≤ α. But
confidence intervals require a something more like ’µ must lie within the ϵ neighborhood of µ̂’.

In general, recognize:
P(|µ̂− µ| ≥ ϵ) ≤ α

= P(|µ̂− µ| < ϵ) > α

= P(µ ∈ (µ̂− ϵ, µ̂+ ϵ)) > α

Immediately recognize the placement of terms to recover this statement about containment in an interval
to avoid getting lost in the algebra. Reason about these statements geometrically.

Note. Hoeffding’s provides an easy way to obtain confidence intervals. Let ϵn =
√

1
2n log 2

α , then

P(|X̄n − p| ≥ ϵn) ≤ α

Which is exactly
P(p ∈ (X̄n − ϵn, X̄n + ϵn)) ≥ α

Definition 4.5 (Mill’s Inequality). Let Z ∼ Normal(0, 1). For t > 0, P(|Z| ≥ t) ≤
√

2
π

e
−t2

2

t
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This result comes from another manipulation of the Markov’s bound. We work this out in detail in the
exercises.

Exercise 2.1. Let X ∼ Exponential(β). Find P(|X − µX | < kσX) for k > 1. Compare this to the bound
you get from Chebyshev’s inequality.

Proof. Notice P(|X − µX | > kσX) = P(|X − β| > kβ) = 1 − P(|X − β| < kβ). Write the central event
|X − β| < kβ ⇐⇒ β − kβ < X < β + kβ. If k > 1, then β − kβ lies outside our support so our event

simplifies to P(X < β + kβ) = P(X < β(1 + k)) =
∫ β(1+k)

x=0
fX(x)dx = −e1+k + 1. P(|X − µX | > kσX) =

1− (−e1+k + 1) = e1+k.
Chebyshev’s bound is simply 1

k2 .

Note. Notice this bound goes like ek, while the Chebyshev bound goes like 1
k2 . For distributions with long

exponential tails, this bound rapidly becomes quite poor.

Exercise 2.2. Let X ∼ Poisson(λ). Use Chebyshev’s to show P(X ≥ 2λ) ≤ 1
λ

Proof. P(|X − λ| ≥ λ) ≤ λ
λ2 = P(X ≥ 2λ) ≤ 1

λ . (Notice {|X − λ| ≥ λ} ⊃ {X ≥ 2λ})

Exercise 2.3. Let X1 . . . Xn ∼ Bernoulli(p) and X̄n = n−1
∑n

i=0Xi. Bound P(|X̄n − p| ≥ ϵ) using
Chebyshev’s and Hoeffding’s inequality. Show that Hoeffding’s inequality produces a tighter bound when n
is large.

Proof. By Chebyshev’s (recall for i.i.d. Xi, E
[
n−1

∑i
n=0Xi

]
= E [Xi]), P(|Xn − p| ≥ ϵ) ≤ p(1−p)

nϵ2 ≤ 1
n4ϵ2 ,

where the second bound comes from the fact that 1
4 is the largest value of Var [X] over p. We use the

Bernoulli presentation of Hoeffding inequality and arrive at 2e2∗nϵ
2

Let ϵ = 0.2 and examine the bounds for n = 10, 100, 1000. The Chebyshev bound goes like 0.625, 0.0625, 0.00625
while the Hoeffding goes like 0.8, 0.00067, 3.6e − 35. Notice Chebyshev starts out stronger and quickly be-
comes order(s) of magnitude weaker.

Exercise 2.4. Let X1 . . . Xn ∼ Bernoulli(p). Fix α > 0. Define ϵn =
√

1
2n log(

2
α ), p̂ = n−1

∑n
i=0Xi, and

Cn = (p̂− ϵ, p̂+ ϵ).

• Use Hoeffding’s to show P(Cn contains p) ≥ 1− α

• Fix α = 0.05 and p = 0.4. Conduct a simulation study with a computer to see how often the interval
contains p (called coverage) for different values of n between 1 and 10000. Plot the coverage as a
function of n.

• Plot the length of the interval versus n. Suppose we want the interval to be less than 0.05. How large
should n be?

Proof. • Using the Bernoulli presentation of Hoeffding’s given, P(|X̂n − p| ≥ ϵ) ≤ 2e−2nϵ2 . Equivalently,

P(|X̂n − p| ≤ ϵ) ≥ 1− 2e−2nϵ2 . Notice p̂n = X̄n from this original definition. Plugging in ϵn, we have
P(|p̂n − p| ≤ ϵn) ≥ 1− α which is the same as saying P(Cn contains p) ≥ 1− α as desired.

• The interval shrinks roughly like
√
n.

√
log( 2

α )

2n ≤ 0.025 then n ≥ 2960

Exercise 2.5. Prove Mill’s inequality: P(|Z| > t) ≤
√

2
π

e−
t2

2

t

Proof. Observe P(|Z| > t) = 2P(Z > t). We’ll begin with one side. Let ϕ(x) = 1√
2π
e

x2

2 be the PDF of Z.

P(Z > t) =
∫∞
x=t

ϕ(x)dx. Because x
t > 1 when x > t,

∫∞
x=t

ϕ(x)dx ≤
∫∞
x=t

x
t ϕ(x)dx. Notice ϕ′(x) = −xϕ(x).

Then
∫∞
x=t

x
t ϕ(x)dx = 1

t [−ϕ(x)]
∞
x=t =

ϕ(t)
t .

Then P(|Z| > t) = 2P(Z > t) ≤ 2ϕ(t)
t =

√
2
π

1
t e

−t2

2 as desired.
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4.2 Inequalities for Expectation

5 Convergence

5.1 Types of Convergence

Proof. Now we prove (b). Fix ϵ > 0 and let x be a continuity point of F . Fn(x) = P(Xn ≤ x) = P(Xn ≤
x,X ≤ x+ ϵ) + P(Xn ≤ x,X ≥ x+ ϵ) ≤ P(X ≤ x+ ϵ) + P(|Xn −X| ≥ ϵ) ≤ F (x+ ϵ) + P(|X −Xn| ≥ ϵ)

Similarly, F (x− ϵ) = P(X ≤ x− ϵ,Xn ≤ x) + P(X ≤ x− ϵ,Xn ≥ x) ≤ Fn(x) + P(|X −Xn| ≥ ϵ).
We use these bounds to construct the inequality F (x−ϵ)−P(|X−Xn| ≥ ϵ) ≤ Fn(x) ≤ F (x)+P(|X−Xn| ≥

ϵ). Take the limit as n goes to ∞. Notice that Fn(x) is a sequence with no guarantees of convergence, so we
have to account for the largest and smallest elements. By our assumption P(|X −Xn| ≥ ϵ) −→ 0 as n −→ ∞.

F (x− ϵ) ≤ lim inf Fn(x) ≤ lim supFn(x) ≤ F (x+ ϵ)

Now take the limit as ϵ
0−→ (this statement holds for arbitrary ϵ > 0). F (x−) ≤ lim inf Fn(x) ≤

lim supFn(x) ≤ F (x+). Using continuinty of F at x, F (x−) = F (x+) and Fn(x) = F (x) as desired.

Note (Convergence in probability does not imply convergence in quadratic mean). Let U ∼ Uniform(0, 1)

and Xn =
√
nI(0, 1

n )(U). First see Xn
P−→ 0. Indeed as n grows sufficiently large, for arbitrary ϵ, P(|Xn| ≥

ϵ) = P(0 ≥ U < n) = n −→ 0. However, E
[
X2

n

]
=

∫ 1
n

u=0
ndu = 1.

Note (Convergence in distribution does not imply convergence in probability). Let X ∼ Normal(0, 1). For
each n, let Xn = −X. Fn(x) = F (x) for any x. But P(|X − Xn| ≥ ϵ) = P(|2X| ≥ ϵ) = P(|X| ≥ ϵ

2 ) ̸= 0.
Indeed the symmetrical shape of the Gaussian preserves the CDF but any given values are negatives of each
other and will never converge.

5.2 The Law of Large Numbers

A crowned jewel of probability. The sample mean approaches the expectation of the underlying distribution.

Definition 5.1. Let X1 . . . Xn be i.i.d. with E [Xi] = µ and Var [Xi] = σ2. Let X̄n = n−1
∑n

i=0Xi. Then

X̄n
P−→ µ.

The sample mean is a random variable so it will never numerically equal the expectation. It will cluster
closer and closer to it.

5.3 The Central Limit Theorem

While the LLN tells us the sample mean clusters around the true mean, it does not give us tools to approx-
imate statements about probability.

Definition 5.2 (CLT). Let X1 . . . Xn be i.i.d. with E [Xi] = µ and Var [Xi] = σ2. Let X̄n = n−1
∑n

i=0Xi.

Then Zn =
√
n(X̄n−µ)

σ

D−→ N(0, 1)
In other words, limn−→∞ P(Zn ≤ z) = P(Z ≤ z) = ϕ(z)

Note we use this to approximate probability statements not the distribution X̄n itself.

Note. By scaling/shifting Z, the CLT really gives us a family of limiting distributions. We often refer to√
n(X̄n − µ) as the ’canonical scaling’. This is because it leads to a non-degenerate limit, approximated by

N(0, σ2 where neither mean or variance depend on n.
Another way of thinking about this ’canonical’ member is as result of the minimal number of steps needed

to ’remove the dependence on n’ from both mean and variance. If one scales by
√
n, the mean is now

√
nµ.

If one shifts by µ, the n remains in the variance.

These approximations are not perfect and indeed we can bound the error:

Definition 5.3 (The Berry-Esseen Inequality). supx|P(Zn ≤ x)− ϕ(x)| ≤ 37
4

E[|Xi−µ|3]√
nσ3

Where the sup bounds the difference across all possible x in the domain.
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5.4 Delta Method

This is like the CLT for functions of the sample mean.

Exercise 2.1. Let X1 . . . Xn be i.i.d. with EX = µ and Var [X] = σ2. Let Sn = 1
1−n

∑n
i=1(Xi − X̄n)

• Show E [Sn] = σ2

Proof. • Recognize
∑n

i=1(Xi − X̄n)
2 =

∑n
i=1(X

2
i − 2XiX̄n + X̄n

2
) =

∑n
i=1(X

2
i ) − 2nX̄nX̄n + nX̄n

2
=∑n

i=1(X
2
i )−nX̄n

2
= nX2

i −nX̄n
2
. Our original expectation simplifies like E

[
1

n−1

∑n
i=1(Xi − X̄n)

2
]
=

1
n−1 E

[
nX2

i

]
−E

[
nX̄n

2
]
= 1

n−1 (n(σ
2 − µ2)− n(σ

2

n − µ2)) = σ2

•

Exercise 2.2. Let X1 . . . Xn be a sequence. Show Xn
QM−−→ b if and only if E [Xn] −→ b and Var [Xn] −→ 0

Proof. The key identity is E
[
(Xn − b)2

]
= E

[
X2

n

]
− (E [Xn]

2
+ E [Xn]

2
) − 2E [Xn] b + b2 = Var [Xn] +

(E [Xn]− b)2. The reverse implication follows immediately. To see the forward argument, notice Var [Xn] ≤
E
[
(Xn − b)2

]
−→ 0 and (E [Xn]− b)2 ≤ E

[
(Xn − b)2

]
−→ 0. Then Var [Xn] −→ 0 and E [Xn] −→ b.

Exercise 2.3. Let X1 . . . Xn be i.i.d. and let µ = E [X1]. Suppose the variance is finite. Show X̄n
QM−−→ µ

Proof. Expand E
[
(X̄n − µ)2

]
= Var [Xn] +E

[
X̄n

2
]
− 2µE

[
X̄n

]
+ µ2 = σ2

n −→ 0

Exercise 2.4. Let X1, X2 . . . be a sequence of r.v.s such that P(Xn = 1
n ) = 1 − 1

n2 and P(Xn = n) = 1
n2 .

Does Xn converge in probability? Does Xn converge in quadratic mean?

Proof. Intuitively Xn approaches 0 with increasing probability. Using Markov’s, P(|Xn − 0| > ϵ) ≤ E[Xn]
ϵ

where E [Xn] =
1
n (1−

1
n2 )+n( 1

n2 ) −→ 0. We can conclude Xn
P−→ 0. However, E

[
(Xn − 0)2

]
= 1

n2 (1− 1
n2 )+

n2( 1
n2 ) −→ 1. So Xn does not converge in quadratic mean.

Exercise 2.5. Let X1 . . . Xn be i.i.d. Bernoulli(p). Show 1
n

∑n
i=0X

2
i converges in probability and quadratic

mean to p.

Proof. E
[
( 1n

∑n
i=0Xi)

2 − 2p 1
n

∑n
i=0X

2
i + p2

]
= E

[
( 1n

∑n
i=0Xi)

2
]
− 2p2 + p2. Notice E

[
( 1n

∑n
i=0Xi)

2
]
has

n terms of expectation p (the diagonals) and n2 − n terms of expectation p2. Then E
[
( 1n

∑n
i=0Xi)

2
]
=

1
n2 ((n

2 − n)p2 + np). The entire expectation is then 1
n2 ((n

2 − n)p2 + np) − p2 = 1
n (p

2 − p) −→ 0. Because
convergence in qm implies convergence in probability, this sum also converges in probability.

Exercise 2.6. Assume average height of men is 68 inches and standard deviation 2.6 inches. Draw 100 men
at random. Find the approximate probability the average height will be at least 68 inches.

Proof. By the CLT, we know
√
n(Xn−µ)

σ

D−→ Z so P(X̄n ≥ 68) = P(Z ≥ 0). Indeed P(Z ≥ 0) = 1 − P(Z ≤
0) = 1

2

6 Models, Statistical Inference and Learning

6.1 Introduction

Statistical inference is the process of using data to infer the distribution that generated the data. A typical
question is:

Given a sample X1 . . . Xn ∼ F , how do we infer F ?
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6.2 Parametric and Nonparametric Models

6.3 Fundamental Concepts in Inference

Many inferential problems are one of three types: point estimation, confidence sets or hypothesis testing.

Definition 6.1. The bias of an estimator is defined by bias(θ̂n) = E
[
θ̂n

]
− θ

We say that θ̂n is unbiased if bias(θ̂n) = 0.

Definition 6.2. An estimator θ̂n of a parameter θ is consistent if θ̂n
P−→ θ.

Definition 6.3. The distribution of θ̂n is called the sampling distribution. The standard error of θ̂n

is defined as

√
Var

[
θ̂n

]
.

Intuitively the bias is a good measure of the mean of our estimator, but does not rule out things like long
tails. Asymptotically, consistency is a stronger condition and lets us know if the entire distribution of the
estimator clusters around the parameter instead of just the mean.

Theorem 6.4. MSE(θ̂) = Var
[
θ̂
]
+ bias2(θ̂)

Proof. E
[
(θ̂ − θ)2

]
= E

[
(θ̂ − ¯̂

θ +
¯̂
θ − θ)2

]
= E

[
(θ̂ − ¯̂

θ)2
]
+E

[
2(θ̂ − ¯̂

θ)(
¯̂
θ − θ)

]
+E

[
(
¯̂
θ − θ)2

]
. The middle

terms drop out (E
[
θ̂ − ¯̂

θ
]
) = 0) and we are left with Var

[
θ̂
]
+ bias2(θ̂)

Definition 6.5. A 1 − α confidence interval for a parameter θ is some interval Cn = (a, b) where
a = a(X1 . . . Xn) and b = b(X1 . . . Xn) are functions of the data such that P(θ ∈ C) ≥ 1− α.

Exercise 2.1. Let X1 . . . Xn ∼ Poisson(λ) and λ̂ = n−1
∑n

i=1Xi. Find the bias, se and MSE of the
estimator.

Proof. bias2(λ̂) = E
[
λ̂
]
− λ = 0. se(λ̂) =

√
λ
n .

We will compute the MSE directly for practice rather than using the decomposition of bias and variance.

MSE(λ̂) = E
[
(λ̂− λ)2

]
= E

[
λ̂2

]
− 2E

[
λ̂
]
E [λ] +E

[
λ2

]
= λ

n + λ2 − 2λ2 + λ2 = λ
n .

Exercise 2.2. Let X1 . . . Xn ∼ Uniform(θ) and θ̂ = max{X1 . . . Xn}. Find the bias, se and MSE of the
estimator.

Proof. Let M = max{X1 . . . Xn}. The CDF for M is P(M ≤ x) = (xθ )
n. The density is then nxn−1

θn .

E [M ] =
∫ θ

x=0
nxn

θn dx = [ 1
θn

n
n+1x

n+1]θx=0 = n
n+1θ bias2(θ̂) = − 1

n+1θ

7 Estimating the CDF and Statistical Functionals

Definition 7.1. Consider i.i.d. X1 . . . Xn ∼ F . The empirical distribution function F̂n is defined F̂n(x) =
n−1

∑n
i=1 I(Xi ≤ x)

Theorem 7.2. For any fixed value x,

E
[

ˆFn(x)
]
= F (x)

Var
[

ˆFn(x)
]
= n−1(1− F (x))F (x)

MSE ˆFn(x) = n−1(1− F (x))F (x)
ˆFn(x)

P−→ F (x)
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Proof. E
[

ˆFn(x)
]
= n−1nE [Fn(x)] = F (x). We can see E [Fn(x)] = F (x) by computing expectation of the

indicator directly, where E [Fn(x)] = P(Xi ≤ x) = F (x) or by treating Fn(x) as a coin flip with probability
of heads of F (x).

Var
[

ˆFn(x)
]
= n−2nVar [Fn(x)] = n−1(1 − F (x))F (x) where Var

[
ˆFn(x)

]
= (1 − F (x))F (x) similarly

because ˆFn(x) can be thought of as Bernoulli.

MSE ˆFn(x) = E
[
( ˆFn(x)− F (x))2

]
= Var

[
ˆFn(x)

]
.

ˆFn(x)
MSE−−−→ F (x) =⇒ ˆFn(x)

P−→ F (x) by basic properties of convergence

Recognize for fixed x, the value of the empirical distribution function can be treated as a sample mean
of i.i.d. Bernoulli (p = P(Xi ≤ x)). The above proof shows this idea in action.

Definition 7.3 (Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality). Let X1 . . . Xn ∼ F . Then for any ϵ > 0,

P(sup
x

|F (x)− ˆFn(x)| ≥ ϵ) ≤ 2e−2nϵ2

Note. We recall that Hoeffding’s inequality was introduced to give a tight bound on the sample mean of
i.i.d. Bernoulli:

P(|X̄n − p| ≥ ϵ) ≤ 2e−2nϵ2

Recall, when ϵ =
√

1
2n log 2

α , the bound is exactly α. This provides the 1 − α confidence interval we

desire.
The inequality we introduce next uses this same idea.

Definition 7.4 (Nonparametric 1− α Confidence Band for F ).

The supremum guarantees this holds even for the largest value of F .

Exercise 2.1. Let X1 . . . Xn ∼ Bernoulli(p) and Y1 . . . Ym ∼ Bernoulli(q). Find the estimator, estimated
SE and approximate 95 percent CI for p and p− q.

Proof. We start with p. Our estimator is exactly the plug-in estimator for the mean: p̂n = n−1
∑n

i=1Xi.

The SE(p̂n) =
√
σ
n . Then our estimated standard error is ŜE(p̂n) =

√
σ̂n

n . We can use the plug-in estimator
for the variance of p̂n to estimate σ̂n. This estimator is n−1

∑n
i=1(Xi − X̄n)

2. The estimated error is then

ŜE(p̂n) =

√
n−1

∑n
i=1(Xi−X̄n)2

n . To find the CI, we recognize p̂n ∼ Normal(p,SE(p̂n)) as n grows large by

C.L.T. Let z95 = Φ−1(95), then ( p̂n−p√
ŜE(p̂n)

− z95,
p̂n−p√
ŜE(p̂n)

+ z95) is our approximate 90 percent confidence

interval.

Now let θ = p−q. θ̂n = n−1
∑n

i=1Xi−m−1
∑m

j=1 Yj . ŜE(θ̂n) =

√
n−1

∑n
i=1(Xi−X̄n)2

n +

√
m−1

∑m
j=1(Yi−Ȳm)2

m .

θ̂n is similarly distributed over Normal(θ, ŜE(θ̂n)) ( θ̂n−θ√
ŜE(θ̂n)

− z95,
θ̂n−θ√
ŜE(θ̂n)

+ z95) is our approximate 90

percent confidence interval.

Exercise 2.2. Let X1 . . . Xn ∼ F and F̂n be the empirical distribution function. For fixed x, use the CLT
to find the limiting distribution of F̂n(x)

Proof. For fixed x, let Yi = I(Xi ≤ x) so F̂n(x) = Ȳn. Then, by CLT, Ȳn ≈ N(µ, σ
2

n ) where µ = P(Xi ≤ x)

and σ2 = P(Xi ≤ x)(1−P(Xi ≤ x)). This approximation of F̂n(x) is N(P(Xi ≤ x), P(Xi≤x)(1−P(Xi≤x))
n ). We

can center and scale to find a limiting distribution that is not degenerate (mean and variance are independent

of n):
√
n(F̂n(x)− F (x))

d−→ N(0, F (x)(1− F (x)).

Proof. Let x and y be distinct points. Find Cov
[
F̂n(x), F̂n(y)

]
.
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Exercise 2.3. Cov
[
F̂n(x), F̂n(y)

]
= Cov

[
n−1

∑n
i=1 1(Xi ≤ x), n−1

∑n
j=1 1(Xj ≤ y)

]
Because covariance

is bilinear, this is n−2
∑n

i=1

∑n
j=1 Cov [1(Xi ≤ x), 1(Xj ≤ y)]. When i ̸= j, the indicators are independent so

the covariance drops out. We are left with the diagonals: n−2nCov [1(X1 ≤ x), 1(X1 ≤ y)]. Cov [1(X1 ≤ x), 1(X1 ≤ y)] =
E [1(X1 ≤ x)1(X1 ≤ y)] − F (x)F (y) = P(X1 ≤ min{x, y})) − F (x)F (y) = F (min{x, y}) − F (x)F (y). Our
final answer is then n−1(F (min{x, y})− F (x)F (y)).

Exercise 2.4. Let X1 . . . Xn ∼ F and F̂n be the empirical distribution function. Let a < b be fixed numbers
and define θ = T (F ) = F (b)− F (a). Let θ̂ = T (F̂n) = F̂n(b)− F̂n(a). Find the estimated standard error of

θ̂ and an expression for an approximate 1− α confidence interval for θ.

Proof. First, recognize θ̂ = F̂n(b) − F̂n(a) can be rewritten as a sample mean of Bernoulli, Yi = 1(Xi ≤
b) − 1(Xi ≤ a) where E [Yi] = θ. Then θ̂ = Ȳn and SE (θ̂) =

√
θ(1−θ)

n . θ is unknown so our approximate

error is ŜE (θ̂) =

√
θ̂(1−θ̂)

n .

To find our confidence intervals, recognize Ȳn
d−→ N(θ, θ(1−θ)

n ) by CLT. Then,
√
nȲn−θ√
θ(1−θ)

d−→ N(0, 1). Thus

P(|
√
nȲn−θ√
θ(1−θ)

| ≤ z1−α
2
) ≈ 1− α. Moving terms around: P(|θ̂ − θ| ≤

√
θ(1−θ)

n z1−α
2
) ≈ 1− α.

Exercise 2.5. Using the earthquake magnitude data provided, estimate F (x) then compute and plot the
95 percent confidence interval for F . Then compute an approximate 95 percent CI for F (4.9)− F (4.3).

Proof. Using the DKW inequality, the 95% confidence band is

L(x) = F̂n(x)− ϵn, U(x) = F̂n(x) + ϵn

where ϵn =
√

1
2n log 2

α with α = 0.05. See Fig. 5.

For θ = F (4.9)− F (4.3), we use the plug-in estimate θ̂ = F̂n(4.9)− F̂n(4.3) with Wald interval

θ̂ ± z1−α/2

√
θ̂(1− θ̂)

n

giving the 95% CI [0.495, 0.557]. See code/7.7.py for implementation.

8 The Bootstrap

8.1 Simulation

8.2 Bootstrap Variance Estimation

8.3 Bootstrap Confidence Intervals

Definition 8.1 (Pivot Intervals). Let θ = T (F ) and θ̂n = T (F̂n). We define our pivot as R = θ̂n − θ.
Let H(r) = P(R ≤ r) be the CDF of the pivot. Because H is a function of F , we compute a bootstrap

estimation Ĥ(r) = B−1
∑B

i=1 1(R
∗
n,b ≤ r)

Where R∗
n,b = θ̂∗n,b − θ̂n. Denote R∗

β as the β sample quantile of (R∗
n,i . . . R

∗
n,b) and θ̂∗β as the β sample

quantile of (θ∗n,i . . . θ
∗
n,b). Notice R∗

β = θ̂∗β − θ̂.

Our confidence interval is then (2θ̂ − θ̂∗1−α
2
, 2θ̂ − θ̂∗α

2
).
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Figure 5: 95% confidence band for earthquake magnitude CDF
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