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1 Basics

Definition 1.1. The sample space (2 is the set of outcomes from an experiment. Each point is denoted w
and subsets, eg. A C 2 are called events.

Definition 1.2 (Axioms of Probability). A function P : Q@ — R that assigns a real number to each event
A C Q is called a probability function or probability measure if it satsifies these three axioms:

1. Non-negativity. P(A) > 0 for every event A

2. Normalization. P(Q2) = 1.

3. Additivity. P(AUB) =P(A) + P(B) if AN B = (.

It is incredible, and not obvious, that much of probability is built up from these only these three axioms

Example 1.3. It’s actually tricky to show P(AU B) = P(A) + P(B) — P(AN B) with these three facts:

P(AU B) = P(AB° N AB N A°B)

(AB°) + P(AB) + P(A°B)

(AB°) + P(AB) + P(A°B) + P(AB) — P(AB)
(AB

(

AB®UAB) + P(A°BU AB) — P(AB)

P
P
P
P(A) +P(B) - P(AB)

Another simple idea is that events that are identical at the limit should have identical probabilities.
Theorem 1.4 (Continuity of Events). If A, — A then P(A,) — P(A4).

Proof. Let A,, be monotone increasing: A; C Ay C .... Let A =lim, o A, = U;2; 4.

Construct disjoint sets B; from each A; where By = 4 and B, = {w € Q:w € A,,w ¢ Ui;} A} Tt
will be shown that (1) each pair of B; are disjoint, (2) -, A; =, B; and (3) A= U, 4 = U2, Bi
(Exercise 1.1).

From Axiom 3: P(A, (L;j ) P( Lnj B;) = Xn: P(B;).

Definition 1.5 (Conditional Probability). If P(B) > 0, then the probability of A given B is

P(AB)

B(A]B) = g

Theorem 1.6 (Total Probability). If A, --- Ay, partition 2, P(B) = Y5 P(B | A;)P(A;)



Note. It can be difficult to assign a probability to every subset of €. In practice, we only assign values to
select subsets described by a sigma algebra denoted A. This is a subset algebra with three properties:

e Non empty. ) € A. ”Measure of the impossible.”
e Closed over unions. Ay, As--- € A = U;A; € A.

e Closed over complements. A € A — A° € A.

Every set in A is considered measurable (by its membership in the sigma algebra). A along with Q
comprises a measurable space, denoted by the pair (A, Q). If the measure on A is a probability function,
importantly P(Q2) = 1, this space is also a probability space, denoted by the triple (Q2, A, P).

When 2 is the real line, the measure is often the Lebesgue measure, assigning intuitive values of ”set
length”, eg. [a,b] — b — a.

Why is this important? While overly pedantic at first glance, this is the structure that explains why
continuous density functions (next section) have nonzero probabilities when integrated over intervals but
assign 0 probability to single points. The continuous measure, eg. Lebesgue measure, defined on the
underlying probability space assigns positive values to sets and 0 to single points.

Exercise 1.1. Fill in the details for Theorem 1.2 and extend to the case where A,, is monotone decreasing.

Proof. For any pair B, 1 and B, because B, C A, and B, 1 N A, =0, it follows that B,.1 N B, = (.

Let U?:l B = U?:l A;. Then U?:Jql B = (An+1 \U?:1 Ai) U(UZL:1 Ai) = U?:Jql A;.
For the monotone decreasing case, let A, be a sequence where Ay D Ay D As....
Observe A C AS... and lim, o A, = Q\ U™ A¢. Construct disjoint B from A¢ in the same way.

Then limy o0 P(Ay) = 1 — 3 P(B?) = 1 — P(A°) = P(A) 0
Exercise 1.3. Let (2 be a sample space and Ay, A, ... be events. Define B,, = U2 A; and C,, = N2, A;.
(a) Show By D By D Bs... and C; C Cy C Cs....

(b) Show w € N2, B,, iff w is in an infinite number of the events
(¢) Show w € Un = 1°°C,, iff w belongs to all of the events, except possibly a finite number of those events.
Proof. (a) Certainly U2, A; D U2, A4, ... and N2 A, C N2, ...

(b) Forward. Assume w € N2, B,. If w does not belong to an infinite number of events A;, there exists
some index j past which w ¢ B;. Then certainly w ¢ N5, B,,. Reverse. w belonging to infinite events
means there cannot exist such a j described previously so w € B,, for all n. Indeed w € N2, B,,

(c) Forward. Assume w € Up2;C,. Then w € C; = N A; for some j. This is another way of saying w
is in every single event except for perhaps a finite number in A;;. Reverse. Let j be the index of the
largest event that w is not in. Then w € (), ; and certainly w € U*C,.

O

Note. The key idea above is this notion of ”infinitely often” (i.0.) and ”all but finitely often” (eventually)
which are two distinct structures of infinite occurence in sequences. Consider an w that exists in every other
event (eg. just the odd indices) for infinite events and revisit its inclusion in N*° B; and U>*C;.

Note. limNU A4, is also referred to as the limit infimum of A,,. Similarly, limU N A,, is referred to as the
limit supremum of A,,.

Exercise 1.7. Let P(J A;) < S2P(A4;). Then P(Ap1U( 45)) < P(Apet)+ (3 P(A)) ~P(Aniin(U A1) <
n+1

> P(4)
Note. Expand a bit on the Boole inequality.

Exercise 1.9. For fixed B s.t. P(B) > 0, show P(. | B) satisfies the three axioms of probability.



P(AB)

pEy > O

Proof. e Non-negativity. If P(B) > 0 and P(AB) > 0 for any A C €, certainly

e Normalization.

PONB) _ P(B) _ 4
P(B) T P(B) T

e Additivity. Let ABNCB = (), then P(AB N CB) = P(AB) + P(CB). Indeed 2ABICE) _ BAB) |
P(CB)

B

O
Exercise 1.11. Suppose A and B are independent events. Show that A¢ and B¢ are also independent.

Proof. We are given P(AB) = P(A)P(B). Then P(A°)P(B°) = (1 -P(A))(1 —P(B)) =1—-P(A) —P(B) +
P(A)P(B) =1 —-P(AU B) = P(A°B°). The second to last equality uses independence of P(AB). The last
equality uses the property of set complements P(AU B) = P(A° N B°). O

Exercise 1.13. Suppose a fair coin is tossed repeatedly until heads and tails is each encoutered exactly
once. Describe (2 and compute the probablity exactly three tosses are needed.

Proof. e The sample space is the set of binary strings with exactly one 0 and 1. For strings of length
greater than 2, these are repeated strings of 0 or 1 capped with a 1 or 0 respectively.

e By independence, each n-string has an identical probability %n There are two such 3-strings: 001 and
110. Using additivity, P(3 tosses) = & + & = 1
O

Exercise 1.15. The probability a child has blue eyes is %. Assume independence between children. Consider
a family with 3 children.

e If it is known that at least one of the children have blue eyes, what is the probablity that at least two
of the children have blue eyes?

e If it is know that the youngest child has blue eyes, what is the probability that at least two of the
children have blue eyes?

Proof. e Straightforward conditional probability. Let A be the event where at least one child has blue
eyes and B be the event where at least two children have blue eyes. Consider first, P(4) = 1 —

P(no child has blue eyes) = 1 — 2—1 = g. Compute P(A N B) by enumerating events 101, 111, 110 and
l2

3,13 _ 10 __ P(ANB) __ 10 64 __ 10

using additivity: 2 -

e Similar procedure. Let A be the event where the youngest child has blue eyes and B be as before.
Using independence, P(A) = 1. (To see this rigorously, enumerate the sample space and see P(€ |
first child blue) = 1). Now P(B N A) describe events 110, 101, 111 only. &5 - 1 = £.

O

Exercise 1.17. Show P(ABC) =P(A | BC)P(B | C)P(C)
P(ABC) P(BC)

Proof. By straightforward application of the definition of conditional probability: IP’(TC)WP(C) =
P(ABC)

Exercise 1.19. Suppose 50% of computer users are Windows. 30% are Mac. 20% are Linux. Suppose 65%
of Mac users, 82% of Windows users and 50% of Linux users get a virus. We select a person at random and
learn they have the virus. What is the probability they are a Windows user?

Proof. Let each w € Q be a distinct user. Then W, M, L C €2 are the users with Windows, Mac + Linux
machines. V, N C () are the users with and without viruses.

P P
We want P(W | V) = (VIIP}?;))(VV) Compute P(V) = >y ar,ry P(V | X)P(X) = 0.705. Then
0.82-0.50
P = ——— = (.581.
(W V) = === = 058 O



Exercise 1.20. A box contains 5 coins, each with a different probability of heads: 0,0.25,0.5,0.75,1. Let
C; be the event with coin 7 and H; be the event that heads is recovered on toss i¢.Suppose you select a coin
at random and flip it.

e What is the posterior probability P(C; | Hy) for each coin?
e What is ]P)(HQ | H1)7
e Let B; be the event that the first heads is recovered on flip i. What is P(C; | B;) for each coin?

Proof. e P(H;) = L. For each coin, P(C; | H) = w

probability: >, P(H|C;)P(C;) = 5. Then eg. the posterior P(Cy | H) =3-1.2 =3

. P(H) can be worked out using total

e Note that both tosses are conditionally independent: P(H.H; | C;) = P(H2 | C)P(Hy | C)).
P(H.H P(H2H; | C)P(C;
P(H2|H1): (21)221(21| )()
P(Hy) 22 P(Hy | Co)P(Cy)
> P(H2H, | C)

2
. The result is 2iP;

Ei ]P(Hl | Ci) Ez pi.

e Similar idea to (a).

. Because P(C;) is uniform, we can simply to

O

Note. Important to see that independent events are not conditionally independent in general. Try to
construct an example.

2 Random Variables

— (kenny) TODO fix counters

Definition 2.1 (Random Variable). A random variable X is a function mapping the sample space to real
numbers: X : ) — R.

It is important to think of the relationship between the random variable and its underlying sample space
when computing probabilities: eg. P(X = z) = P(X~!(z)) and P(X € A) = P(X~1(4)).

Definition 2.2 (Cumulative Distribution Function). The CDF is the function Fx : R — [0, 1] where
Fx(z) = P(X < z). Equivalently Fx(z) = P(X~1((—o0,1]).

The CDF contains ”all the information” in a random variable. This is articulated by the following
theorem:

Theorem 2.3. For random variables X andY with CDFs F and G, if F(z) = G(X)Vz € [0,1], then X =Y
P(X € A)=P(Y € A) for each A CR).

And the behavior of the CDF, including ”all of its information” is uniquely determined by just three
properties:

Theorem 2.4. A function F : R — [0,1] is a CDF iff it satisfies three properties:
e Non-decreasing. o > 11 = F(x3) > F(x1)
e Normalization. limy o F(y) =0 and lim,_,; F(y) =1

e Right-continuous. For any x € R, F(z) = F*(z) where F*(z) = limy_; y>. F(y)



Proof. Starting with (iii) from the text, let A = (—oo,z] and y1,ya,... be a sequence where y; < y5 ... and
lim; y; = =. By the definition of the CDF, F(y;) = P(4;) and F(x) = P(A), where lim; F(y;) is equivalent
to limy 5 y>e F'(y). Observe N;A; = A so P(A) =P(M;4;) = lim; P(A;) = lim; F(y;) = F(z) as desired.

To see (i), lim,—,_o F(y) = 0, define a sequence yi1,ya --- where y; > ys--- as before and y; = y. Let
A; = (00,y;]. Then N;A; = 0 and P(N;4;) = P(0) = 0. Indeed lim,_, o F(y) = lim; P(4;) = P(N;4;) = 0.
A similar argument shows the limit to the other direction.

For (iii), if 22 > 1 then P((—o0,23]) > P((—00,21]) and F(z3) > F(x1). O

The interesting direction is the reverse: a function satisfying these properties uniquely determines a
probability function. It is difficult to show in general. A concrete example is the Cantor function (Devil’s
staircase) which satisfies non-decreasing, normality and right-continuous properties but from which is difficult
to derive a measure that satisfies eg. countable additivity.

Note. A deeper measure theory course will approach this problem by defining the probablity function on an
algebra of subsets rather than on each subset directly. Refer to tools like Caratheodory’s extension theorem.

It is from these random variables that we build ”distributions”, essentially functions R — [0, 1] that obey
the three probability axioms.

Definition 2.5. If X ”takes” countably many values (eg. has a countable range) it is discrete. fx(z) =
P(X = z) is its probability mass function or PMF.

Definition 2.6. X is continuous if it has some fx that obeys three properties:
. ffooo fx(x)de =1
eVzeR: fx(z)>0
e Pla< X <b)= f;fx(x)dx

fx is called the probability density function or PDF. Additionally, Fx (z) = ffoo fx(z)dz and fx(z) =
Fi (z) for all points z where Fx is differentiable.

The formal relation between the density function and the sample space is a bit tricky, especially when
X is continuous. In practice, we often just produce a function and deal with it directly while assuming the
underlying sample space with a well defined measure is lurking around.

Note. We learned the probability function is defined on a well-defined sample space by measuring events /
sets.

Definition 2.7. The quartile function (or inverse CDF) is F~1(q) = inf{z : ¢ < F(x)}

We call F *1(14—4 the first quartile, ' ’1(1)£ the second quartile (or median), etc.
We will proceed with some important mass functions.

Definition 2.8 (The Point Mass Distribution). If X ~ o, (reads ”X has a point mass distribution at a”),
fx(a) =1 while fx(z) =0 for all = # a.

0, z<a
F — ) )
X(x) {1, T >a
Definition 2.9 (The Uniform Distribution). Suppose X has a mass function:

f(x):{}e, ze{l.. .k}

0, o.w.

X then has a uniform distribution on {1...k}.

Definition 2.10 (The Bernoulli Distribution). If X ~ Bernoulli(p), the PMF of X is f(x) = p*(1 —p)! =2
for x € {0,1} and p € [0, 1].


https://en.wikipedia.org/wiki/Cantor_function
https://en.wikipedia.org/wiki/Cantor_function
https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_extension_theorem

Here is the first instance of a parameterized random variable.

Definition 2.11 (The Binomial Distribution). Binomial variables model the number of successful flips for
n identical trials with probability p for each. We say X ~ Binomial(n,p) with PMF:

(Z)p“(l —p)"* ze{l...n}

J(@) = {0 0.W.

The following represent different ideas of unbounded ”counting”: trials until success and trials in some
interval of time.

Definition 2.12 (The Geometric Distribution). Here we have the idea of flipping a coin until our first
success. X ~ Geometric(p) with PMF: f(x) = (1 —p)®~!p

The probability value of each term is a geometric series. Indeed p>-"(1 — p)® = 1_(7f_p) =1.

Definition 2.13 (The Poisson Distribution). If X ~ Poisson(\) with PMF f(z) = e 27

!

A can be thought of as some interval of time. X then measures the number of events in this interval:
decaying particles or mRNA translation.

Similarly to the geometric distribution, each term in the poisson is a Taylor polynomial, derived from
the power series expansion of the exponential function. Indeed e™* 2% 21 = e7*e* = 1.

Note. For distributions that count trials in some interval - some time or number of trials - the sum of
variables equals a single variable that accumulates the interval.

If X, ~ Binomial(ny,p) and Xs ~ Binomial(na,p), then X7 + X5 ~ Binomial(ny + na,p).

If X; ~ Poisson(A1) and Xy ~ Poisson(Az), then Xy + Xo ~ Poisson(A1 + A\2).

Note. Recall Q really lurking around. Eg. let X ~ Bernoulli and P(X = 1) is P(w € [0,p]) = p.
For the continuous distributions, useful to think of integration.

Definition 2.14 (The Continuous Uniform Distribution). If X has a uniform distribution on the interval

[a,b] with PDF:
fla) = {ba x € [a,b]

0 0.W.
and CDF:
0 r<a
F(r)=4{ %2 xz€la,b]
1 x>b

V. . I . 1 — L (z—p)?
Definition 2.15 (The Normal (Gaussian) Distribution). f(x) = v

Note. If X ~ N(0,1) we say that X has a standard Normal distribution. We often denote X as Z
with ¢ and ® as the PDF and CDF.

There is no closed form function for ®, so we use precomputed values from tables or rely on statistical
programs. Calculations with Normal distributions then proceed by reexpressing X as some function of Z
and using these values.

The following facts are essential when manipulating these variables:

o If X ~ N(u,0), then Z = £ ~ N(0,1)

o If Z~ N(0,1), then X = p+0Z ~ N(u,o0)

o If X; ~ N(u;,0;) are independent, then X =53, X; ~ N3, 1, >, 0)

e

w8

Definition 2.16 (The Exponential Distribution). If X ~ Exp(8), then f(z) = %



Indeed [

Note (The Gamma Function). We often want a continuous extension of the factorial to real arguments,
where I'(z) = (z — 1)! for # € Z". This is the gamma function and defined I'(z) = [;* y* ‘e ¥dy.
Evaluating the integral for I'(1),T'(2) ... is a useful exercise to convince oneself of agreement with the
factorial.
For example, I'(3) = fooo y*e~Ydy. Using integration by parts, this evaluates to [—y%e™¥ —2ye ™Y —2e~Y|°.
Using L’Hopital’s, the first two terms drop out and we are left with I'(3) =2 = (3 — 1)! as desired.

Equipped with the gamma function, we can now develop the gamma distribution.

Definition 2.17 (Gamma Distribution). Let o, 8 > 0. A continuous random variable X is said to have a
Gamma distribution with shape parameter o and scale parameter 3, denoted

X ~ F(OL’B)7

if its probability density function is

1
- BT(a)

If X; ~ I'(cy, B) are independent, Y. X; =T'(3 a4, B).

e ® B p>0.

fx(x)

The exponential distribution is then just a special case of a gamma distribution with o = 1.

Note. The Gamma-normalization comes from evaluating

/ 2 e /B 4.
0

x=pt, dr=pdt,

We make the substitution

so that

o0

2 e /B dy = /Ooo(ﬂt)al et (Bdt) =gt 5/000 t*te7tdt = BT (a).

Hence in the density

0

1
- foT(a)

the factor f*I'(«) is exactly the normalizing constant that makes fooo f(z)dz = 1.

moz—l e—x/ﬁ

f(z)

Definition 2.18 (X? Distribution). X has a X? distribution with p degrees of freedom if the PDF is

1 ra
f(x)_r(g)ﬁx e

[N

Let p > 0. A random variable X is said to have a y? distribution with p degrees of freedom, denoted X ~ Xfﬁ
if its probability density function is

1

_ [ Ry
_721’/2I‘(§)x2 e x> 0.

7

fx(x)

This distribution is the sum of squared, independent normals. If Z; ~ N(0,1) then ), Z? ~ X2.

Definition 2.19 (Independence of Random Variables). If P(X € A,Y € B) =P(X € A)P(Y € B), we say
X and Y are independent, written X Il Y.

Exercise 2.5. Let X and Y be discrete random variables. Show X and Y are independent iff fx vy (z,y) =
fx () fy (y)



Proof. If P(X € A,Y € B) = P(X € A)P(Y € B) for every subset 4, B, let A = {z} and B = {y} for
every possible pair of elements. Then fx y(z,y) = fx(x)fy(y). To see the reverse, P(X € A,Y € B) =

Dwen 2oyen Ixy (2,Y) = 2pea Ix (@) X ep fr(y) = P(X € A)P(Y € B) u

Theorem 2.20. Suppose the range of X and Y is a (potentially infinite) rectangle. If we can express
fxy =g(x)h(y), then X and Y are independent.

Pmof. Start by computing the marginals. fx = [ g(z)h(y)d z)([ h(y)dy) and fy = [ g(z)h(y)de =
y)([ g(x

Then fxfy = g(z)([ h(y) y) ([ g(x) (y )(J [ h(y)g(z)dzdy). Because g(x)h(y) = fx,v,

the integration term evaluates to 1 Then foy = g h(y) ([ [ h(y)g(z)dzdy) = g(x)h(y)(1) = fx,y which

is exactly the condition for independence of X and Y O

In the above problem, notice the significance of requiring the range to be a rectangle. Any other region
would produce integration limits in one variable that are functions of the other variable and you can no
longer pull out the integration terms from the maringals:

fxte) = o[ [ " hly)dy).

! =x?
a function of =

Definition 2.21 (Transformation of Continuous R.V.). When Y and X are continuous.
e Find Ay = {z:r(z) < y} for each y € R
e Then Fy(y) = P(r(X fA fxdz

o fy = F{/
Exercise 2.1. Show P(X =z) = F(z2%) — F(z7)

Proof. The key here is to see lim, <y .o F(2) = P(X € U;(00, 2;]) = P(X < z) for some sequence 21, 22, - - -
where lim; z; = ;. While limy~, . F(y) = P(X € N;(00,4;]) = P(X < z).

Pay attention to the behavior of converging sets and the boundary. In the right-continous case, the
sequence is approaching the boundary x from above and each sequence is closed on x. Therefore in the limit,
they include z.

In the left-continuous case, the sequence is approaching the boundary x from below and each sequence
excludes z. Therefore in the limit, they exclude .

To conclude F(z7) — F(z7) = P(X < 2) —P(X < z) = P(X = x). Of course, if X is continuous,
F(zt) = F(z7) and P(X = x) = 0, showing once again that every real value has no probability mass. [

Exercise 2.4. Let X have density

%, 0<ax<l,
fx(x)= %, I <x <),
0, o.w.
e Find the CDF of fx
o LetY = % Find fy.
Proof. .
%aﬁ, 0<x<l,
L 1<z <3,
Fx(x) = g 1
s(z=3)+7, 3<z<5h
1 r>5



0, y <3,

3 1 1 1
v 8 ley<i

87 3 ’

i(]‘*%)‘i’ga 1<ya

Then to compute fy (y) = Fy (y), we differentiate:

0, y<%,
0, %<y<1,
41%27 1<y,

O

Exercise 2.7. Let X and Y be independent and suppose each is Uniform(0,1). Let Z = min{X,Y}. Find
the density fz(z).

o Proof. P(Z >2)=P(X >2,Y >2)=P(X > 2)P(Y > 2). Then, P(Z >2)=(1-2)? and Fz =1-P(Z >
2)=1-(1-2)>% fz=F,=-22+2 O

Exercise 2.9. Let X ~ Ezp(3). Find F(x) and F~1(q).
Proof. f(x) = %61/5. So F(z) = [ f(z)dz =1—e"%/5.
F is a bijection over the interval [0, 00) so we can find a genuine inverse F~1 as —31In(1 — q).
O

Plugging in a few numbers to get a feel for F~1(q), we see that F~1(0.99) = 34.6 and F'~1(0.9999) = 39.2,
confirming that linear changes in sample space value have exponential effect in probability and that eg.
increasing [ decreases likelihood of events by stretching the density.

Exercise 2.11. Flip a coin once with probability heads of p. Let X and Y be the number of heads and
tails.

e Show X and Y are independent

e Let N ~ Poisson(A) be the number of coin flips. Show now that X and Y are independent
Proof. (a) One toss. Because Y =1 — X,

P{lY=1|X=1}=0#£P{Y =1} =1—-p,
so X and Y are dependent.

(b) Random number N ~ Poisson(\).
Step 1 (conditional pmf). Given N = k,

k\ .
P{X =z, Y = Yy | N = k} = 1{z+y:k} (x)pm(l —p)y.
Step 2 (unconditional pmf). Summing over k, only the term k = x + y remains:

+y [ x _ Y
P{X=2Y=y}= 6/\(;_’_(@)!( Iy)Pm(l —p)=ec? ()\f!) e ()\(ly! P)) .

Step 8 (marginals). Hence
X ~ Poisson(Ap), Y ~ Poisson(A(1 — p)),
and P{X =z, Y =y} = P{X = z}P{Y =y}, so X and YV are independent. O



Exercise 2.13. Let X ~ Normal(0,1) and Y = e*.

e Find fy and plot it.
e Generate 10,000 random draws from X. Create a histogram of these draws and compare to the density
plot.
Proof. Because r = e® is a strictly monotonically increasing function, we can apply fy = fx(s(z))s'(x)

ny 2
where s = r~!. Then fy(y) = fx (ln(y))% Using the standard normal density, fy (y) = \/217316_%

Histogram of Y = eX (X ~ N(0, 1)) with log-normal pdf overlay

[ simulated Y
theoretical pdf
0.8 1
0.6 A
ey L
%)
C
()
© 0.4 1
0.2 A
0.0 h""* . . : : . .
0 10 20 30 40 50 60

Figure 1: Histogram of Y = eX overlaid with its log-normal density.

Note. It is worth understanding why fy = fx(s(x))s’(z) can be used when r is a strict monotonically

increasing or decreasing function. This condition forces s to be differentiable and single-valued for the

single-variable change-of-variable integration.

Exercise 2.15. e Let X have a continuous, strictly increasing CDF F. Let Y = F~}(X). Find the
density of Y.

e Now let U ~ Uniform(0,1). Let X = F~1(U), where F is no longer the CDF of X but is still
continuous and strictly increasing. Show Fx = X.

e Write a program to generate Exponential(f) random variables from Uniform(0,1)
Proof. e P(Y <y) =P(F(X) <y) =P(X < F~(y)) = F(F~(y)) So F, = 1.
o P(X <z)=P(F '(U) <2)=P(U < F(x)) = Fy(F(z)) = F(z)

e Using the fact that X = F~1(U) has CDF F, we compute the exponential CDF and find its inverse:
Fy Y(q) = —BIn(1 — £%¢). A histogram of generated values, overlayed against the exponential PDF,

can be found below.
O
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Figure 2: Histogram of generated exponentials overlayed against theoretical PDF

Exercise 2.16. Let X ~ Poisson(A\) and Y ~ Poisson(u) be independent random variables. Find the
density of X given X +Y = n. Use the fact that X + Y ~ Poisson(A+ p) and P(X =2, X +Y =n) =
P(X =2,Y =n—ux).

Proof. We are interested in the quantity P(X = 2, X +Y =n|X +Y = n). Observe P(X +Y =n) =
e O OHT AN P(X = 2, X +Y =n) =P(X =2,Y =n—12) = P(X = 2)P(Y =n—21) =
e_’\%e_"z’:%.
Our conditional distribution is then the expression:
e‘%‘“i—?%
e— (k) A"

n!
Simplifying we begin to see the shape of the binomial:
!l (n—a)! (A + p)»

n! A=
(n — )zl (A + p)
n! NE
(=2l O+ 2Ot )
This is (:)(ﬁ)m(ﬁ)(n — x) or Binomial(n, ﬁ) d

Exercise 2.20.

3 Expectation

3.1 Expectation of a Random Variable

Definition 3.1. The expected value (or mean or first moment) of X is defined as

E[X] = /xdFX(x) _ {Zz xf(z), if X is discrete

[, xf(x)dz, if X is continuous

11



Assuming the sum or integral is well-defined, we use the following notation to denote the expected value
of X: E[X]=p=px

3.2 Properties of Expectation
Theorem 3.2. E[}". X;] =5 E[X],
Theorem 3.3. If X;...X; are independent, E[[[ X;] = [[, E [X],

Note. Work out the above briefly and note why we need independence for the product and not the sum.
BEg. [(z+y)fx,y vs. [zyfx,y. Integration is additive but factorization of the joint PDF /PMF is necessary
for the product terms.

3.3 Variance and Covariance
Definition 3.4. The variance of X is defined as
E[(X ~ E[X])?]
and is denoted as 0% or o2 or Var [X]
Theorem 3.5. Assuming the variance of X is well-defined, it has the following properties:
e Var[X]=E[X?] - E[X]?
e Var [aX + b] = a® Var [X]
o If Xi...X, are independent, Var [y, a;X;] =, a? Var [X;]
Proof. e E[(X —p)?| =E[X?-2Xp+p?| =E[X?] — 2
e E[(aX +b)—E[aX +b)]>=E [(aX +b—ap+b)?] =E[(a(X — p)?| =a®E [(X — p)?] = a® Var [X]

e Var[},a;X;] = E [(}, a:.X; — E[Y,; a;X;])?]. Using additivity of expectation, E [}, a; X;] = >, a; E[X],.
Then our expression becomes E [(3 a;X; —a; E[X];)?]. Expanding this expression, we arrive at
E [Zi(aiXi —a;E[X],)*+ > @iai (X — E[X])(X; —E [X]])} . The first set of terms become Y, a? Var [X],
and the second set of terms drop out when expanded as every pair of variables are independent.
(B [X:X;] - E[X];, E[X]; = 0).

(2

O

Definition 3.6. Let X ... X, be random variables. The sample mean is then
Xu= 13X
n — n - K3

And the sample variance is

S2 = S (X=X

n—1

Theorem 3.7. If X1...X, are i.i.d. and E[X;] = p and Var [X;] = 2, then E [X,,] = p, Var [X,| = ‘T—:,
and E [Sfl] =02,

Proof.



Notice >, (X; — X,)? = S, (X2 —2X, X, + X)) = >, (X2) —2Y, X, X, + 5, X,,°. The inner term becomes
2X,nX, = QnX:HQ. So:

E [Srﬂ =E ! Z(X7 — Xn,)2 = L ZE [Xﬂ _E [X”Q} — n[(02 _ H2> —(Z_ HQ)] Y

n—1 - n—1 n—1 n

Note. So what’s up with the ﬁ?

Natural way to introduce ”degrees of freedom”. Consider the vector of residuals r; = X; — X,,. We
actually ”use up” one of these residuals in the following way.

Notice the sum of our residuals evaluates to 0.

n B n 1 n n n
X, —X,) = Xi——)» Xi)= X; — X; =0
This is just algebra and comes from the fact that our mean is not the true mean rather estimated from
data. So after picking n — 1 such r;, the last r, must equal — 2?2—01 r; for this identity to hold.
We then say that the sum of residuals, ), r;, used within the S2 statistic has only n — 1 "degrees of
freedom”. It is common shorthand to also say the variance estimate itself (S?) also has n — 1 degrees of
freedom.

Definition 3.8. Let X and Y be r.v.s with means px, py and standard deviations ox,oy. The covariance
of X and Y is then:

Cou(X,)Y)=E[(X — ux)(Y — uy)]

The correlation is then:

Cov(X,Y)
p=pxy=—""-->
OxXO0Oy
Theorem 3.9. Cov(X,Y) =E[XY]|-E[X|E[Y] and px,y satisfies —1 < pxy <1. IfY = aX +b, where
-1, a<0

a,b are constants, then pxy = . If X,Y are independent, then Cov(X,Y) = 0, although the

1, a>0

converse need not be true.

Theorem 3.10 (Variance of a sum). Var [X + Y] = Var[X] + Var[Y] + 2Cov(X,Y). More generally
Var [, a;X;] = >, a? Var [X;] + Y Yoicj2xa; xa;Cov(X;, X;)

3.4 Expectation and Variance of Important Random Variables

3.5 Conditional Expectation

Definition 3.11 (Conditional Expectation).

Definition 3.12 (The Law of Iterated Expectation). E[E[X|Y]] = E [X]
Definition 3.13.

Example 3.14. Suppose we pick a county from the US at random and choose n people from it. Let X be
the number of these people with a disease. Let @ be the proportion of people in the county with the disease.
Then X given @ = ¢ is Binomial(n,q). E[X|Q = ¢] = nQ and Var [X|Q = ¢] = nQ(1 — Q).

Suppose now @ ~ Uniform(0,1). This is a hierarchical model. E[X] = E[E[X]] = E[nQ] = 3.
Var [X] = Var [E [X|Q]] + E [Var [X|Q]].

Var [E [X|Q]] = Var [nQ] = n’ E[Q] = n%

13



E [Var[X|Q] = B[nQ(L - Q) =nB[Q - Q"] = [~ ¢da =
Then:
n TL2
Var [X] = 5 + B

3.6 Moment Generating Functions

Definition 3.15 (The Moment Generating Function). The MGF, or Lapace Transformation, of X, is
Uxt =E [e"X] = [e'XdFxdx where ¢ varies over R.

We will use the MGF to compute the moments of X. Assuming v is well defined on the open interval
around t = 0, ¢’y (0) = & E [e!X] |;=0 = E [4£e'¥] =0 = E [Xe!X] ;=0 = E [X].

Swapping differentiation with expectation when 1 is well defined in this interval is a fact we will assume
for now but (hopefully) will return to later.

Theorem 3.16 (Properties of the MGF).
IfY = aX +b, then ¢y (t) = ePx (at)

Theorem 3.17. Let X and Y be random variables. If wx (t) = ¥y (t) for all t, then X and Y are equal in
distribution.

I view the above fact as another way of saying if X and Y have identical moments, they must have the
same distribution.

3.7 Exercises

Exercise 2.1. Assume we have some fortune ¢ and we play a game where each turn we half or double our
money with even probability. Compute the expected value of the resulting fortune after n turns.

Proof. Let X,, be our random variable and see P(X,, = ¢ x 2"72%) = (2)2_". The density is binomial with
support ¢ * 2""2% ranging over = 0 to £ = n. The 27" expression comes from simplifying the standard
LI Qimilar for 22

Then E[X,,] = Y7, c* 2772 (")27". Simplifying the obvious things, we have ¢} "'_ 2727 (7). O

x

Exercise 2.2. Show Var [X] = 0 iff exists some constant ¢ where P(X =¢) = 1.

Proof. O
Exercise 2.3. Let X; ... X, be ii.d. Uniform(0,1) and ¥,, = max{X; ... X, }. Compute E[Y,].

Proof. Observe Fy, = P(max{X;...X,} <y)=y". (It is helpful to see also that P(min{X; ... X,,} <y) =
1—(1—y)"). Then fy, =dFy, = d(é’;) =ny" " EY,] = [ydy,dy = [ny"dy = [25y" ]y = 725 O
Exercise 2.4.

Proof. O

Note. Another approach is invoking the "rule of the lazy statistician”, eg. EY = [r(z)fx, . .x,dz1 ... dz,.
In two dimensions, this calculation is trivial as the density can be evaluated as a piecewise integral over two

halves of the unit square (those halves separated by a line through the diagonal). 2 [ fm1>z2 r1drodr; =

2% 3 = 2 as expected for E[Y?]

Exercise 2.5. Flip a fair coin until you encounter a heads. Compute the expected value of the number of
tosses.

14



Proof. Let X be the random variable holding the number of tosses. See that P(X = z) = %z Then
EX]=>2, 5= To compute this series, recognize a general form of a geometric series can be expressed
as G(r) =Y ol 1" = 1.

We need to rearrange things a bit: First, we take the derivative to pull out an x: d(Gdff)) =y et =
(1 —r)~2. Then we multiply by r: > o0, 2r® =r* (1 —r)"%. When r = %, this expression is equivalent to
the series of our expectation. E [X] = 2 O

Exercise 2.7. Let X be a continuous random variable where P(X < 0) = 0 and the expectation exists.
Show E [X] = [ P(X > z)dx.

Proof. Observe fmoio P(X >2x) = fmoio(l—F(x))dx. This evaluates to [(1—F(z))x]52 o — Ioio(—fx (z))xdx us-
ing integration by parts. Observing that lim,_, ., = (17FX (x)) = 0, this expression simplifies to f;io zfx(x)de =
E [X] as desired. O

Note. This is the tail-sum expression of expectation that will come in handy later.
Exercise 2.12. Compute E [X] and Var [X]| when X is Poisson, Exponential.

Proof. Let X ~ Poisson()). Recall e® = > % using the Maclaurin series for e®. We are interested in
S prfx(z) =32 jx2re for E[X]. Notice the Maclaurin series for ze® is 22, Then e™* Y57 A~ =
e *e* = \ as desired.

To compute Var [X], we are instructed to first find E [X (X — 1)]. Notice E [X?] = E[X (X — 1)]+E[X].

oo
x(x—1)N" _,
EX(X-1)]=> —
z=0
Simplify and notice this looks like a ”shifted” form of the Maclaurin series for e*. The first two terms
are 0, so we can start our counter at x = 2:

& T

St

=2 (.13 - )
Factoring out a A% we arrive at the familiar series:

o \(@-2)
—A\2
¢ A Z(x—?)!

r=2

Indeed, E [X?] = E[X(X —1)] + B[X] = A2+ A So Var[X] =E[X?] —E[X]? =)+ -2 =)\a
desired.
Now let X ~ Exp(8). Recall fx(z

) =
L fme%m = L[ BreF — 25 OO | =1 %32 =3 as desired.
5 5 T F

=e MM = \?

%67%. Then E[X] = [ _, %efﬁda: Using integration by parts,

Now we approach Var [X] = E [X?]~E [X]?. First we compute E [X?] = Joso ””T;e_%dx =5 Jaso x2e”F
Again using integration by parts we arrive at:
]- P =z o
(g™ — [(=paweT)| =
=0
1 — —a 5 —z |
G(—BaeT 4 28(~faeT — g2 T))|_ =
=0
1 —x —x —x s
E(—BxQeT —2B%ze7 —2B%7)) .
5(26%) =267
B
Then Var[X] = E[X?] - E[X]? = 24% — 32 = 2 as desired. O

15



Exercise 2.13. Suppose we generate a random variable in the following way. We flip a fair coin. If heads,
X ~ Uniform(0,1), and if tails, X ~ Uniform(3,4). Find the mean and standard deviation of X.

Proof. Let Y ~ Bernoulli(0.5) represent the coin flip. E[X] = E[E[X|Y]] = 0.5« E[X|Y =0] + 0.5 %
E[X|Y =1]=05%05+0.5%3.5

Var [X] = E[Var [X|V]] 4+ Var [E[X|Y]]. E[Var[X|Y]] =05xL +05x«L = L. Var[E[X|Y]] =
E [(E[X|Y] - E[X])?] = 0.5%(0.5—-2)>+0.5%(3.5—2)> = 1.5%. Var[X]| = E [Var [X|Y]|+ Var [E[X|Y]] =
5 +225=233 0x = 1.53 O

Exercise 2.21. Let X, Y be random variables. Suppose E [Y|X] = X. Show Cov(X,Y) = Var(X).

Proof. Cov(X,Y)=E[XY] - E[X]E[Y]. Recognize E[XY] = E [E[XY|X]]. Evaluating the inner expec-
tation E[XY|X] = X E[Y|X] = X. Then, E[XY] = E [X2]. Similarly, E [X]E[Y] = E [X] E[B[Y|X]] =

E [X]E [X]. So the expression collapses to E [X?] — E [X]? = Var [X]. O
Exercise 2.23. Find the MGF's for Poisson, Normal and Gamma distributions.

Exercise 2.24. Let X ~ Poisson()). Then Px(t) = E[eX!] = 320 eXte 21, Recognize Y00, I;,’\I =
>oolo (e;)}) is the Maclaurin series for e*". Then e™* 357 eXt27 = e~ *ee A= A1)

Let X ~ Normal(u,o?).
Exercise 2.6. Prove the rule of the lazy statistician in the discrete case.

Proof. LetY =r(X). E[Y] =} o, yP(Y =y). Forany giveny, y«P(Y =y) =3 .1, r(@)P(X =2) =

(@) Yper1(yy PX = @), Then 30 oy yP(Y = y) = 3 oy D epiyy T(@)P(X = 2) = 30 x r(2)P(X =
x). O

fxy = {

Proof. The main idea is Var [2X + 3Y 4 8] =4 Var [X|+ 9 Var [Y]+2%2%3Cov(X,Y). The rest is tedious
algebra.

The following calculations are important EX]=2E[X? = ﬁ EY]=4 E[Y?] =% Var[X] = {&
Var[Y] =2 E[XY] =2 Cov(X,Y) =

Pluggmg things back in, we arrive at 2415 O

Exercise 2.15. Let
(z+y), 0<z<1,0<y<2

, o.w.

O wl—

and find Var [2X + 3Y + 8.

Exercise 2.16. Let r(z) and s(y) be functions of z and y. Show that E [r(X)s(Y)|X] = r(X) E[s(Y)|X].
Then show E [r(X)|X] = r(X).

Proof. E[r(X)s(Y)|X] = [r(@)s(y)fx,v|x (@', y|z)da’dy. Pay careful attention to the use of 2’ and z.
We integrate over all 2/ in X where as x is provided by the conditioning X (and may be fixed in future
calculations).

Jr@)s(y) fxvix (@ yle)de'dy = [r(z")s(y )fy|X(y|x )fx|x (2'|z)dx'dy by the chain rule of conditional
densities. Now observe when z is fixed, eg. in the express1on E[ (X)s(Y)|X = =], fx|x(2'|z) becomes 1x—,

and X degenerates to X = x. Indeed, E [r(X)s(Y)|X = 2] = r(z) [ s(y) fy|x (y|a")dz'dy = r(z) E [s(Y)|X].
When X is not fixed, E[r(X)s(Y)\X} =r(X)E[s(Y)|X] O

Exercise 2.19.
Proof. E[X,| =1 «n«E[X;] =E[X;] Var [X,| = % xnx Var [X;] = L Var [X]] O
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Exercise 2.22. Let 0 < a <b < 1and X ~ Uniform(0,1). Let

v — 1, 0<X <b, 7 1, a<X <1,
N 0, otherwise, N 0, otherwise.

e Show Y and Z are not independent.

e Evaluate E [Y|Z]
Proof. e PY=1Z=1)=b—a#PY =1)P(Z=1)=ax*(1l—a)

¢ E[Y|Z] =

—a

e 2
1 A
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4 Inequalities

4.1 Probability Inequalities

Definition 4.1 (Markov’s Inequality). For some nonnegative r.v. X and ¢t > 0:

(X —pl20)< %
and )
B(1Z]> K) < o
where Z = . In particular, P(Z > 2) < i and P(Z > 3) < é
Proof. M >P((X —u)? >t?) =P(|X — p| > t). The second case comes from t = ko: P(|X — u| >
ko) < . Then P(|Z| > k) < 15 O

Definition 4.3 (Hoeffding’s Inequality). Let Y;...Y, be independent observations s.t. E[Y;] = 0 and
a; <Y; <b;. Let € > 0. Forany ¢t > 0, P((31_,Yi) >¢€) <e “[[i_ Oetzw

Definition 4.4 (Bernoulli Presentation of Hoeffding’s Inequality). Let X ... X,, ~ Bernoulli(p) with ¢ > 0.
Then:

2

P(|X, — p| > €) < 272"

n Yo Yi
Proof. Using Markov’s bound, P(3°7_Y; > te) = P(eXi=0Yi > ¢l€) < M = e te " etYi,
g ) i=0 e =0
Now consider E [etYi]. We know a; < Y; < b;, so we can express Y; as a convex combination Y; =
_ Yi—ai . T . . tY; ta; th;
- [ - . - .
(1 — a)a; + ab; where o = 3 Because e” is a convex function, e < (1 — a)e!® + ae'®. Because
E[Y;]=0,E[a] = Indeed E[ Y] <E[(1-a)e t“IJraetb}:M—eg(“ for some u, g.

We will make use of the exact form of Taylor s theorem: if g is a smooth function then there is a number
¢ € (0,u) such that g(u) = g(0) +ug'(0) + %" (£).
a;_ . b,
Some algebra is needed to bieb,% = e9(®) O
Note. Our bounds, like Hoeffding’s, are statements about tail probabilities P(|i — p| > ¢€) < a. But

confidence intervals require a something more like iz must lie within the € neighborhood of /.
In general, recognize:

—P(uc(i-cfi+e)>a

Immediately recognize the placement of terms to recover this statement about containment in an interval
to avoid getting lost in the algebra. Reason about these statements geometrically.

Note. Hoeffding’s provides an easy way to obtain confidence intervals. Let €, = {/ 5= 5 log , then

]P)(|Xn _p| 2 en) S «@

Which is exactly B _
P(p € (Xn —€n, X+ 6,)) >
32

Definition 4.5 (Mill’s Inequality). Let Z ~ Normal(0,1). For ¢t > 0, P(|Z]| > t) < \/%Q

t
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This result comes from another manipulation of the Markov’s bound. We work this out in detail in the
exercises.

Exercise 2.1. Let X ~ Exponential(f). Find P(|X — px| < kox) for kK > 1. Compare this to the bound
you get from Chebyshev’s inequality.

Proof. Notice P(|X — ux| > kox) = P(|X — 8] > kB) = 1 - P(|X — 8| < k). Write the central event
|X — 8| <k <= B—-kB< X <B+kB. If k> 1, then 8 — kS lies outside our support so our event
simplifies to P(X < 8+ kB8) =P(X < (1 +k)) = ffi?m fx(x)dr = —e'F + 1. P(|X — px| > kox) =
1— (_el+k: 4 1) — 61+k.

Chebyshev’s bound is simply k% O

Note. Notice this bound goes like ¥, while the Chebyshev bound goes like k% For distributions with long
exponential tails, this bound rapidly becomes quite poor.

Exercise 2.2. Let X ~ Poisson()). Use Chebyshev’s to show P(X > 2)) <

Proof. P(IX — A > A) < &% =P(X >2X) < +. (Notice {|X — X[ > A} D {X >2A}) O

Exercise 2.3. Let X;...X, ~ Bernoulli(p) and X,, = n='>." ; X;. Bound P(|X, — p| > €) using
Chebyshev’s and Hoeffding’s inequality. Show that Hoeffding’s inequality produces a tighter bound when n
is large.

Proof. By Chebyshev’s (recall for iid. X;, E|{n 'S _ X;| = E[X,]), (X, —p| > €) < p(ii;p) <

— nde2>
where the second bound comes from the fact that i is the largest value of Var [X] over p. We use the

Bernoulli presentation of Hoeffding inequality and arrive at 2¢2¥ne’

Let € = 0.2 and examine the bounds for n = 10, 100, 1000. The Chebyshev bound goes like 0.625,0.0625, 0.00625
while the Hoeffding goes like 0.8,0.00067, 3.6e — 35. Notice Chebyshev starts out stronger and quickly be-
comes order(s) of magnitude weaker. O

Exercise 2.4. Let Xi... X, ~ Bernoulli(p). Fix a > 0. Define €, = y/5-log(2), p =n"' 3, X;, and
Cn - (]576,}34»6)'

e Use Hoeffding’s to show P(C,, contains p) > 1 — «

e Fix @ = 0.05 and p = 0.4. Conduct a simulation study with a computer to see how often the interval
contains p (called coverage) for different values of n between 1 and 10000. Plot the coverage as a
function of n.

e Plot the length of the interval versus n. Suppose we want the interval to be less than 0.05. How large
should n be?

Proof. e Using the Bernoulli presentation of Hoeffding’s given, P(|X,, — p| > €) < 2¢~2n<" | Equivalently,
IP(|X” —p|<e)>1- 2¢~2n¢*  Notice pn = X,, from this original definition. Plugging in €, we have
P(|pr, — p| < €n) > 1 — o which is the same as saying P(C), contains p) > 1 — « as desired.

e The interval shrinks roughly like y/n. % < 0.025 then n > 2960

t2

Exercise 2.5. Prove Mill’s inequality: P(|Z| > t) < \/%g

Proof. Observe P(|Z| > t) = 2P(Z > t). We'll begin with one side. Let ¢(z) = — ¢ be the PDF of Z.
P(Z > t) = [~, #(z)dx. Because £ > 1 when z > t, [~ ¢(z)dz < [~ Lp(x)dx. Notice ¢'(z) = —z¢(x).
Then [, £6(x)dz = H—g(@))32, = “.

= t

Then P(|Z] > t) = 2P(Z > t) < 221 = \/%le_Tt2 as desired. O

o)
t t

5
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4.2 Inequalities for Expectation
5 Convergence

5.1 Types of Convergence

Proof. Now we prove (b). Fix € > 0 and let = be a continuity point of F'. F,(z) = P(X,, < z) = P(X,, <
2, X<z+e)+PX, <2, X>0+4+¢) <PX <2+ +P(X,—X|>€) < Flz+e€)+P(|X - X,| >¢)

Similarly, F(z —€) = P(X<x—e Xn <x)+1P’(X<x—e Xp>2) < Fo(z) + P(1X — X,| > ¢).

We use these bounds to construct the inequality F'(z—e)—P(|X—X,| > ¢€) < F,(z) < F(2)+P(|X-X,,| >
€). Take the limit as n goes to co. Notice that Fj,(z) is a sequence with no guarantees of convergence, so we
have to account for the largest and smallest elements. By our assumption P(|X — X,,| > €¢) — 0 as n — oo.

F(z —¢€) <liminf F,,(z) < limsup F,,(z) < F(xz +¢€)

Now take the limit as ¢ > (this statement holds for arbitrary ¢ > 0). F(z7) < liminf F,(z) <
limsup F,(x) < F(z™1). Using continuinty of F at z, F(z~) = F(z") and F,(z) = F(x) as desired. O
Note (Convergence in probability does not imply convergence in quadratic mean). Let U ~ Uniform(0,1)
and X, = \/nly 1,(U). First see X, £, 0. Indeed as n grows sufficiently large, for arbitrary e, P(|X,| >
€) =P(0 > U < n)=n— 0. However, E [X2] :fu":Ondu: 1.

Note (Convergence in distribution does not imply convergence in probability). Let X ~ Normal(0,1). For
each n, let X,, = —X. F,(z) = F(z) for any . But P(|X — X,,| > ¢) = P(|2X]| > ¢) = P(|X| > §) # 0.

Indeed the symmetrical shape of the Gaussian preserves the CDF but any given values are negatives of each
other and will never converge.

5.2 The Law of Large Numbers
A crowned jewel of probability. The sample mean approaches the expectation of the underlying distribution.
Definition 5.1. Let X; ... X, be iid. with E[X;] = u and Var [X;] = ¢%. Let X,, = n~! iy Xi. Then
X, 5.

The sample mean is a random variable so it will never numerically equal the expectation. It will cluster
closer and closer to it.

5.3 The Central Limit Theorem

While the LLN tells us the sample mean clusters around the true mean, it does not give us tools to approx-
imate statements about probability.
Definition 5.2 (CLT). Let X; ... X, beiid. with E[X;] = p and Var [X;] = 0%, Let X,, =n~! Yoo X
Then Z, = Y22 2, N(0, 1)

In other words, lim, . P(Z, < 2) =P(Z < z) = ¢(2)

Note we use this to approximate probability statements not the distribution X, itself.

Note. By scaling/shifting Z, the CLT really gives us a family of limiting distributions. We often refer to
v/n(X,, — i) as the ’canonical scaling’. This is because it leads to a non-degenerate limit, approximated by
N(0, 02 where neither mean or variance depend on n.

Another way of thinking about this ’canonical’ member is as result of the minimal number of steps needed
to 'remove the dependence on n’ from both mean and variance. If one scales by /n, the mean is now /nu.
If one shifts by u, the n remains in the variance.

These approximations are not perfect and indeed we can bound the error:
Definition 5.3 (The Berry-Esseen Inequality). sup,|P(Z, < z) — ¢(z)| < 2 E“\XFJQ‘ }
Where the sup bounds the difference across all possible x in the domain.
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5.4 Delta Method

This is like the CLT for functions of the sample mean.

Exercise 2.1. Let X; ... X, be iid. with EX =y and Var [X] =¢% Let S, = £~ >"" | (X; — X,,)

n

e Show E[S,] = o2
Proof. e Recognize Y " (X; — X,)? = (X2 - 2X, X, + an) =3 (X2 - X, X, + an2
S (X2)—nX,” =nX2—nX,’. Our original expectation simplifies like E {ﬁ S (X — Xn)2] =
> 2 P
B [0X2] - E [nX,7] = 2 (n(0® - p2) - (2 - i2) = o?

n—1

O
Exercise 2.2. Let X; ... X, be a sequence. Show X, M, b if and only if E[X,] — b and Var [X,,] = 0
Proof. The key identity is E [(X,, — b)?] = E[X2] — (E (X, + E[X,]?) — 2E[X,]b+ b? = Var[X,]

(E[X,] —b)%. The reverse implication follows immediately. To see the forward argument, notice Var [X,,]
E [(X, —b)?] = 0 and (E[X,] —b)? <E[(X, —b)?] = 0. Then Var[X,] — 0 and E [X,,] — b.

OIN +

Exercise 2.3. Let X;...X, bei.id. and let u = E[X;]. Suppose the variance is finite. Show X, % L

Proof. Expand E [(X, — #)?] = Var [X,] + B [X,°| =24 B [X,] + 42 = % >0 O

Exercise 2.4. Let X1, X>... be a sequence of r.v.s such that P(X, = 1) =1— % and P(X,, = n) = %.

n
Does X, converge in probability? Does X,, converge in quadratic mean?

E[Xn]

Proof. Intuitively X,, approaches 0 with increasing probability. Using Markov’s, P(|X,, — 0] > ¢€) < ==
where E [X,,] = 1(1— %) +n(-Z) — 0. We can conclude X, 0. However, E [(X, — 0)?] = L(1- %)+
n?(Z;) — 1. So X,, does not converge in quadratic mean. O

Exercise 2.5. Let X7 ... X, beii.d. Bernoulli(p). Show % Z?:o X2 converges in probability and quadratic
mean to p.

Proof. E[(L 30 X;)2 —2pi 3" (X2 4+ p?] =E[(2 X0 X;)?] — 2p* + p?. Notice E[( Y1 ) X;)?] has
n terms of expectation p (the diagonals) and n? — n terms of expectation p?. Then E [(% Z?:o Xi)Q] =
L ((n® — n)p? + np). The entire expectation is then #((n2 —n)p? +np) — p? = %(102 —p) — 0. Because

n2
convergence in qm implies convergence in probability, this sum also converges in probability. O

Exercise 2.6. Assume average height of men is 68 inches and standard deviation 2.6 inches. Draw 100 men
at random. Find the approximate probability the average height will be at least 68 inches.

Proof. By the CLT, we know ¥2Xe=t) Dy 7 o P(X,, > 68) = P(Z > 0). Indeed P(Z > 0) = 1 - P(Z <
0) = % O
6 Models, Statistical Inference and Learning

6.1 Introduction

Statistical inference is the process of using data to infer the distribution that generated the data. A typical
question is:

Given a sample X7 ... X, ~ F, how do we infer F' 7
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6.2 Parametric and Nonparametric Models
6.3 Fundamental Concepts in Inference

Many inferential problems are one of three types: point estimation, confidence sets or hypothesis testing.

Definition 6.1. The bias of an estimator is defined by bias(én) =E {én} -0
We say that 6,, is unbiased if bias(f,,) =

Definition 6.2. An estimator én of a parameter # is consistent if 9n Lo

Definition 6.3. The distribution of 6, is called the sampling distribution. The standard error of 0,,
is defined as 4/ Var [én} .

Intuitively the bias is a good measure of the mean of our estimator, but does not rule out things like long
tails. Asymptotically, consistency is a stronger condition and lets us know if the entire distribution of the
estimator clusters around the parameter instead of just the mean.

Theorem 6.4. MSE() = Var {é} + bias®(0)

Proof. E [(é - 9)2} —E [(é 40— 9)2} —E [(é - 5)2} [ 200 — 6)(0 — )] +E [(5 - 9)2}. The middle
terms drop out (E [é - 5}) = 0) and we are left with Var {HA} + bias?(f) O
Definition 6.5. A 1 — a confidence interval for a parameter 6 is some interval C,, = (a,b) where

a=a(X;...X,) and b=">b(X;...X,) are functions of the data such that P(f € C) > 1 — a.

Exercise 2.1. Let X;...X, ~ Poisson(\) and A = n=' 3" | X;. Find the bias, se and MSE of the
estimator.

Proof. bias’(\) = E [5\} —A=0. se(\) = \/g
We will compute the MSE directly for practice rather than using the decomposition of bias and variance.

MSE(}) = E [(X-A)?} —E M —2EN EN+E[\] =24 )2 -202 4 \2= 2, 0

Exercise 2.2. Let X, ... X, ~ Uniform(f) and § = maz{X;...X,}. Find the bias, se and MSE of the

estimator.

Pmof Let M = ma:z:{Xl . Xn}. The CDF for M is P(M < z) = (§)". The density is then n%
f _oNg=d =[5 n:‘_lx”“]g 0= it bias?(6) = %_‘_10 O

7 Estimating the CDF and Statistical Functionals

Definition 7.1. Consider i.i.d. X;...X, ~ F. The empirical distribution function F,, is defined Fn(x) =
n Y I(X; <)

Theorem 7.2. For any fized value z,
E|F, (x)} = F(x)

Var [F,(2)] = n71(1 = F(@)F(2)
MSEF;( ) =n"1 - F(z))F(x)
F(z) 2 F(x)
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Proof. E {Fn(x)] =n"nE[F,(r)] = F(z
indicator directly, where E [F},(2)] = P(X; < x) = F(x) or by treating F,(z) as a coin flip with probability
of heads of F(z).

Var [F,[(g;)} = n~2n Var [F,(z)] = n~'(1 — F(z))F(z) where Var [Fnix)] = (1 - F(z))F(z) similarly

). We can see E [F,(z)] = F(z) by computing expectation of the

because F),(z) can be thought of as Bernoulli.

MSE F,(z) = E [(F,[(x) - F(m))ﬂ ~ Var [F,[(x)}.
Fnix) MSE, F(z) = Fnix) Ei F(z) by basic properties of convergence O

Recognize for fixed x, the value of the empirical distribution function can be treated as a sample mean
of i.i.d. Bernoulli (p = P(X; < z)). The above proof shows this idea in action.

Definition 7.3 (Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality). Let X;...X,, ~ F. Then for any € > 0,

P(sup |F(x) — FnA(x)| >e¢) < 2e2ne”

Note. We recall that Hoeffding’s inequality was introduced to give a tight bound on the sample mean of
i.i.d. Bernoulli:

P(|X, —p| > €) < 2e72¢

Recall, when € = 1/2% log %, the bound is exactly . This provides the 1 — a confidence interval we

desire.
The inequality we introduce next uses this same idea.

Definition 7.4 (Nonparametric 1 — o Confidence Band for F).
The supremum guarantees this holds even for the largest value of F'.

Exercise 2.1. Let X;...X,, ~ Bernoulli(p) and Y7 ...Y,, ~ Bernoulli(q). Find the estimator, estimated
SE and approximate 95 percent CI for p and p — q.

Proof. We start with p. Our estimator is exactly the plug-in estimator for the mean: p, = n~! Z?:l X;.
The SE(p,) = Y% Then our estimated standard error is SE(p,) = Vou, ‘We can use the plug-in estimator

n n
for the variance of p,, to estimate &,,. This estimator is n™! Z?Zl(Xi — Xn)2. The estimated error is then

SAE(ﬁn) = ‘/”_12?:1(&7)2”)2

n

. To find the CI, we recognize p, ~ Normal(p,SE(p,)) as n grows large by

C.L.T. Let z95 = <I>—1(95)7 then (\/13873137(7;31) — 295, \/% + zg5) is our approximate 90 percent confidence

interval. _
A oA n-13>" i—X1n)2 m—13™m —Ym)?
Now let 6 = p—gq. 0, = n~1 22121 X;—m! Z;nzl Y;. SE(6,) = V' Z@:ﬁ(XZ Xn) + V' Zg;;(Y Yon) .
A e e . . oA 0,—6 . 0, —0 . .
0y, is similarly distributed over Normal(0,SE(6,)) ( ST 295, T + zg5) is our approximate 90
percent confidence interval. O

Exercise 2.2. Let X;... X, ~ F and F, be the empirical distribution function. For fixed x, use the CLT
to find the limiting distribution of F,(x)

Proof. For fixed z, let Y; = I(X; < z) so F,(x) = Y,. Then, by CLT, ¥,, ~ N(u, %2) where u = P(X; < z)
and 02 = P(X; < 2)(1 —P(X; < z)). This approximation of F,(z) is N(P(X; < ), P(X"Sx)u;?(xigx)) ). We
can center and scale to find a limiting distribution that is not degenerate (mean and variance are independent

of n): /n(F,(z) — F(z)) i>N(O,F(:U)(l—F(ac)). O

Proof. Let z and y be distinct points. Find Cov |, (z), Fy,(y)|. O
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Exercise 2.3. Cov {Fn(x), F’n(y)} = Cov {nil S WX <a)yn' 001X < y)} Because covariance

is bilinear, thisisn=2 Y | > j=1 Cov [1(X; < ),1(X; <y)]. When i # j, the indicators are independent so

the covariance drops out. We are left with the diagonals: n=2n Cov [1(X; < z),1(X; < y)]. Cov[1(X; < z),1(X; <y)] =
E[1(X; <2)1(Xy <y)| - F(2)F(y) = P(Xy < min{z,y})) - F(2)F(y) = F(min{z,y}) - F(z)F(y). Our

final answer is then n=!(F(min{z,y}) — F(2)F(y)).

Exercise 2.4. Let X;...X,, ~ F and F}, be the empirical distribution function. Let a < b be fixed numbers
and define § = T(F) = F(b) — F(a). Let 6 = T(F,,) = F,(b) — F,,(a). Find the estimated standard error of
f and an expression for an approximate 1 — a confidence interval for 6.

Proof. First, recognize 6 = Fn(b) — Fn(a) can be rewritten as a sample mean of Bernoulli, ¥; = 1(X; <
b) — 1(X; < a) where E[Y;] = 6. Then § = ¥,, and SE () = w. 6 is unknown so our approximate
error is SE (f) = 1/ @.

. . od 0(1-0) /nY,—0 d
To find our confidence intervals, recognize Y,, — N (6, =——) by CLT. Then, W] — N(0,1). Thus

\/ﬁyjn_e o) A~ _ - Q . ) _ 9(179) a) ~ _
P(|7\/9(1779)| < 21-¢) =1~ a. Moving terms around: P(|0 — 0| </=——2z1_a)~1—a. O

Exercise 2.5. Using the earthquake magnitude data provided, estimate F'(x) then compute and plot the
95 percent confidence interval for F'. Then compute an approximate 95 percent CI for F'(4.9) — F'(4.3).

Proof. Using the DKW inequality, the 95% confidence band is
L(.I) = Fn,(l‘) — €n, U(l‘) = Fn(m) + €n

where €, = ,/ﬁ log% with a = 0.05. See Fig. 5.

For § = F(4.9) — F(4.3), we use the plug-in estimate § = F),(4.9) — F},(4.3) with Wald interval

6(1—6)

0+ Zl—a/2

giving the 95% CT [0.495,0.557]. See code/7.7.py for implementation.

8 The Bootstrap

8.1 Simulation
8.2 Bootstrap Variance Estimation

8.3 Bootstrap Confidence Intervals

Definition 8.1 (Pivot Intervals). Let § = T(F) and 6,, = T'(F},). We define our pivot as R = 6,, — 0.

Let H(r) = P(R < r) be the CDF of the pivot. Because H is a function of F', we compute a bootstrap
estimation H(r) = B~ Ef;l LRy, <7)

Where R}, = é:b —6,. Denote R} as the 8 sample quantile of (R ive- :‘Lb) and éZ as the 8 sample
quantile of (0}, ;...0; ;). Notice Rj = 05 — 0.

Our confidence interval is then (20 — éL%,Zé’A — é*%)
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Figure 5: 95% confidence band for earthquake magnitude CDF
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